
Inelastic Supply of Innovators, Monopsony Power, and
Creative Destruction*
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1 Introduction

Productivity growth and creative destruction —the termination of firms by the entrance of more

competitive firms— have fallen substantially in the US over the past twenty years. Yet, the

spending on R&D activities and the hiring of specialized workers have increased considerably

over the same period.1 Big corporations devote increasingly large resources to employ and

generously retribute highly-skilled workers. Yet, these forces fail to foster innovation and

productivity growth in the economy. Are these seemingly conflicting trends an equilibrium

outcome of market incentives? What forces may account for those diverse trends? And what are

the implications of those forces for the pace of innovation, growth of productivity, and the role

of economic policy?

Our study provides a novel theory that accounts for the seemingly contrasting evidence by

considering the interplay between the strategic behavior of incumbent firms in monopsonistic

markets and the elasticity of the labor supply of researchers. We first develop a simple model

of monopsonistic competition and strategic behavior of dominant firms that shows that high

wages and employment for research workers is the optimal choice by incumbent firms to deter

innovation from entrant firms and preserve market dominance. Our theory shows that this

mechanism is powerful when the labor supply of researchers is relatively inelastic. We test our

mechanism and the resulting predictions of our theory assembling a novel dataset that matches

the universe of patent applications in the US with the stock market returns from inventions

across 281 four-digit Naics industries. We establish several new results showing the persistent

decline in the elasticity of the labor supply of research workers across time and industries,

and evincing the negative link between R&D expenditures by market leaders with sectoral

productivity growth and creative destruction. Finally, we develop a full, quantitative model to

assess the quantitative implications of our theory and run counterfactual policy analysis.

Theoretical framework. We develop a simple model of creative destruction in monopsony

markets for research workers based on the Aghion-Howitt model of Shumpeterian destruction

1Section 2 provides evidence on these empirical regularities.
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(Aghion and Howitt, 1992). To fix ideas, we begin by studying the standard monopsony market,

with the incumbent firm setting the market wage while accounting for the effect of the wage

on the labor supply. The incumbent strategically sets the wage below the marginal product

of labor, decreasing employment and resulting in higher profits, which fosters the entrance

of firms and creative destruction despite the lower share of income to research workers. We

then show that these results are overturned if the incumbent firm accounts strategically for

the effect of hiring research workers on the probability of entrant firms to innovate. In such a

case, the incumbent firm optimally undertakes a “defensive-hiring” strategy by employing R&D

workers to reduce the innovating probability of competitors, decreasing creative destruction.

Thus, defensive hiring overturns the standard monopsony result of low employment, low wages,

and high creative destruction.

Defensive hiring is the dominant strategy when: (i) the incumbent firm has low R&D

productivity; (ii) the incumbent firm has strong decreasing returns to scale in R&D; and (iii) the

expected profits of the entrant firms are low. Since the three conditions imply a reduction in

the innovation probability for the incumbent and the entrant firms, defensive hiring becomes

prevalent when “ideas are getting harder to find” (Bloom et al., 2020).

When defensive hiring is the dominant strategy, the elasticity of the labor supply of R&D

workers is central to the strength of our mechanism in the economy. Defensive hiring is costly

for the incumbent firm that strategically sets wages and employment at high levels to reduce

the innovation probability of competitors, and our model shows that the effectiveness of such a

strategy primarily hinges on the elasticity of the labor supply of R&D workers. Consider the

case of a perfectly elastic labor supply of research workers. Hiring by the incumbent increases

the wage due to the decreasing returns of the innovation process, which spurs an increase in

the supply of R&D labor, requiring the incumbent firm to hire more aggressively to sustain

defensive hiring to hinder the availability of research workers to potential competitors, further

increasing wage costs. Hence, a highly elastic labor supply of researchers deters defensive hiring

and preserves creative destruction. When the labor supply of research workers is inelastic,
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however, hiring by the incumbent firms curtails the availability of research workers to potential

competitors without inducing an increase in wage costs. Hence, an inelastic labor supply of

research workers encourages defensive hiring and impairs creative destruction. Thus, the

strength of our mechanism relies on the testable assumption of a rigid labor supply for research

workers, and the model provides several predictions on the link between R&D spending by

incumbent firms with creative destruction and TFP growth in the economy. In particular, our

model predicts:

• Incumbent firms’ R&D negatively affects new firm entry.

• Incumbent firms’ R&D positively affects their life expectancy.

• The above effects are stronger when the supply of research workers is inelastic.

Empirical results. We first validate the central mechanism of our theory by focusing on

the elasticity of the labor supply of research workers, estimating the value, and studying the

variations across time and industries; then, we assess the predictions of our theory by studying

the effect of defensive hiring on TFP growth and creative destruction.

We assemble a novel dataset by combining the innovations of individual inventors elicited

from the universe of patent applications recorded by the US Patent and Trademark Office for

the period 1970-2019 with the returns of those innovations to the inventors from stock market

price data. By linking individual inventors —the empirical counterpart for research workers

in the model— to the market value of their patents elicited from the stock market prices —the

empirical counterpart for the payoff for inventors in conducting research— we establish three

new facts on the elasticity of the labor supply of research workers:

Fact 1. The labor supply of research workers is inelastic on average over the sample period. A

1% increase in the average market value of patents in a research field (adjusted for the number of

co-inventors), which is our proxy for the expected payoff of inventors for undertaking research

effort, attracts an additional 0.05% inventors applying for patents in the same field.
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Fact 2. The elasticity of the labor supply of researchers has decreased over time, from a value of

0.07 between 1970 and 1995 to 0.02 between 1996 and 2019 (while the full sample point estimate

is 0.05, as established in Fact 1). In other words, the labor supply of researchers has become

increasingly inelastic over time.

Fact 3. The elasticity of labor supply of researchers is largely heterogeneous across fields.

Since the exposure of industries to research fields is different, the elasticity of labor supply of

researchers is strongly heterogeneous across industries.

We then study the implications of strategic hiring for creative destruction and TFP growth by

combining our data on patents and stock market returns on inventions with R&D spending data

from Compustat Fundamental Annual data, sectoral TFP from the Bureau of Labor Statistics

covering 90 four-digit Naics industries, and firm entry from the Business Dynamics Statistics

covering 281 four-digit Naics industries. We establish the following new facts:

Fact 4. R&D spending by incumbent firms negatively predicts the creation of new firms in the

same industry, and the relationship is stronger in industries with an inelastic labor supply of

researchers.

Fact 5. R&D spending by incumbent firms negatively predicts the growth of TFP for firms in the

same industry, and the pattern is stronger for industries with a low elasticity of research labor

supply.

Fact 6. R&D spending by incumbent firms positively predicts the life expectancy of the incumbent

firms, and the prediction is stronger for industries with a lower elasticity of research labor supply.

Quantitative model. Having validated empirically the central assumption on the inelastic

labor suply of research workers, as well as the key theoretical predictions of our theory, we

extend the simple model in a full, quantitative model to assess the quantitative implications of

our theory and run counterfactual policy analysis. We calibrate the model to the U.S. data. Most

importantly, the model calibrates a high switching cost for research workers, which entails a
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low elasticity of research labor supply, a target moment obtained from Fact 1. Our quantitative

model establishes four important results.

First, defensive hiring prevails as the dominating driving force due to the low elasticity of

research labor supply. As a result, incumbent firms strategically set higher wages and recruit

research workers aggressively, leading to low creative destruction and business dynamism. This

hurts technological growth due to the lower R&D productivity of incumbents than the entrants,

calibrated to the finding of Akcigit and Goldschlag (2023).

Second, the higher wage set by incumbent firms attracts more workers to choose research

careers, which is a general equilibrium effect that benefits technological growth, similar to a sub-

sidy to research occupation. However, this benefit is dominated by the proceeding detrimental

effect of defensive hiring on creative destruction.

Third, conditional on the elasticity of research labor supply, the motive of defensive hiring

is stronger when the R&D productivity is lower. In other words, the incumbent firms would

repress creative destruction more aggressively when “ideas are getting harder to find” (Bloom

et al., 2020).

Finally, an increase in the switching cost for research workers, consistent with the deepening

specialization of research (Yang and Borland, 1991), leads to a decline in creative destruction, a

rise in the population of research workers, and a drop in technological growth, broadly consistent

with the empirical patterns in the past few decades. The government can partially revert the

above trends by reducing switching costs. Policies such as advocating affordable online courses

and promoting interdisciplinary research are likely effective.

Related research. Our analysis relates to research that studies the effect of the strategic

behavior of incumbent firms in conducting R&D on technological growth. Argente et al. (2020)

and Akcigit and Goldschlag (2023) show that R&D spending by large firms fails to spur sustained

innovation while deterring market competition. Bloom et al. (2020) and Bilal et al. (2021) that the

slowing process of finding ideas hinders growth and creative destruction. Cunningham et al.

(2021), Bao and Eeckhout (2023), and Benkert et al. (2023) show that incumbent firms strategically
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deploy R&D spending and use acquisition to enhance their own market power. We show that

the defensive hiring of research workers is an effective strategy to retain the market power by

incumbent firms in monopsony markets with low elasticity of labor supply to explain important

patterns in TFP and creative destruction in US data.

We also relate to the literature on monopsony power. A bulk of research (Azar et al., 2019;

Berger et al., 2022; Manning, 2021) focuses on the classic monopsony market with dominant

firms setting a lower-than-competitive wage while sub-hiring workers. Our paper is mostly

related to Parente and Prescott (1999) and Fernández-Villaverde et al. (2021), who show that

dominant firms increase hiring to strengthen the monopsony power in the product and labor

markets, opposite to the prediction of the classic monopsony model. Different from the previous

literature that primarily studies the decreasing labor share and increasing labor and product

market concentration, we study the implication of monopsony power in researchers’ labor

market for technological growth.

Structure of the paper. The remainder of the paper is organized as follows. Section 2 provides

motivating evidence. Section 3 develops a simple model of creative destruction in monopsony

markets for research workers that provides our key results and the testable predictions of our

theory. Section 4 assembles a new dataset that provides novel evidence on the inelastic supply

of innovators and the negative effect of R&D spending on creative destruction and productivity

growth. Section 5 develops an extended version of our simple model to study quantitive

implications and policy analysis.

2 Motivating evidence

In this section, we provide a unified picture of the disparate developments in TFP, R&D spend-

ing, firm entrance, and the number, specialization and compensation of researchers in the US

economy in the period 1929-2020. Our key message is the persistent decline in the growth rates

of TFP and creative destruction concomitant to the steady increase in the number, remuneration,
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and specialization of R&D workers over the same period.

Figure 1: TFP growth and the rate of entry of new firms un the US economy
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(A) TFP growth has been declining 

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

(B) Firm entry rate has been declining

In Panel (A), the solid curve displays the utilization-adjusted TFP growth rate constructed by Fernald (2014). The
dashed curve is the trend estimated with an HP filter. Panel (B) displays the firm entry rate measured as the ratio of
the number of new firms to the total number of firms in the BDS data.

Panel (A) in Figure 1 shows the annual utilization-adjusted TFP growth (black line), con-

structed using the methodology in Fernald (2014), and the trend of the series from the HP-filer

(dashed line) for the period 1948-2023. The figure shows the gradual fall in the trend of TFP

growth over the sample period, corroborating the analogous findings in several studies (Gordon,

2012, Akcigit and Ates, 2021, and Acemoglu et al., 2023).

Panel (B) in Figure 1 shows the entry rate for firms in the period 1978-2018. We measure the

entry rate by the ratio between the number of new firms and the number of firms recorded in

the Business Dynamics Statistics (BDS) dataset, administered by the US Census Bureau. The

figure shows a steady decline in the rate of firms’ entry over the period that is consistent with

the results of several studies (Decker et al., 2020 and Akcigit and Ates, 2023)

Panel (A) in Figure 2 shows the share of R&D expenditure as a fraction of total GDP for the

period 1929-2020. R&D expenditure is from the Bureau of Economic Analysis (BEA) administered

by the US Department of Commerce. The figure shows that the increase in R&D spending is

mostly uninterrupted throughout the past 100 years of US history.

Panel (B) in Figure 2 shows the ratio of the effective number of researchers to working-age

population constructed by Bloom et al. (2020) for the period 1960-2015. The series shows an
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Figure 2: R&D expenditure, number and wage of researchers in the US
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(A) R&D expenditure has been increasing

Panel (A) shows the share of R&D investment in US GDP. Panel (B) shows the ratio of the effective number of
researchers constructed by Bloom et al. (2020) to working-age population. 1950 is normalized to one. Panel (C)
shows the number of research doctorate recipients from U.S. colleges and universities constructed by NSF. Panel (D)
shows the ratio of the median annual wage of research occupations to the median annual wage for undergraduate
degree and higher. Research occupations include Computer and Mathematical Occupations (occupation code
15-0000) and Life, Physical, and Social Science (occupation code 19-0000). Data is from BLS.

upward trend that is consistent with the increase in R&D spending in the economy.

Panel (C) in Figure 2 shows the number of recipients of research doctorate for the period

1958-2022, constructed using data from the National Science Foundation (NSF). The series shows

a steep increase in the inflow of doctorate researchers evincing a twelvefold increase from the

start of records in 1958. The upward trend is consistent with, and partially accounts for, the

sharp increase in the number of researchers shown in Panel (B).

Panel (D) in Figure 2 shows the ratio of the median-annual wage of research occupations

to the median-annual wage for an undergraduate degree or higher from the Bureau of Labor

Statistics (BLS) for the period 2000-2022. The figure shows that researchers have a higher wage

growth compared to workers with an undergraduate degree or higher.
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To summarize, our collection of evidence shows that the rates of TFP growth and entry

of new firms in the economy have declined significantly despite the substantial increase in

aggregate R&D spending, the rise in the number, remuneration, and knowledge specialization

of researchers. In the next section, we develop a theory that unifies these seemingly contrasting

empirical regularities.

3 A simple model of creative destruction and monopsony

We develop a simple model of creative destruction in a monopsony market for research workers

that accounts for the facts presented in Section 2. The central mechanism in the model hinges on

the interplay between “defensive-hiring” arising from the forces of the monopsony market and

the inelastic supply of R&D workers. Our simple model relies on the assumption of an inelastic

labor supply of research workers and provides several predictions on creative destruction and

TFP growth that we will test in the data (Section 4). We will extend our simple framework to a

comprehensive dynamic model to study quantitative implications and economic policy (Section

5).

3.1 Economic environment

The model is static, based on the parsimonious framework by Aghion and Howitt (2005),

enriched with a sectoral labor market for research workers and strategic behavior in hiring from

the incumbent firm. The economy comprises J sectors, each populated by an incumbent firm

holding monopoly power and producing one unit of non-storable goods at a unitary marginal

cost. The sectors are symmetric, so we drop the sectoral index. The monopolistic incumbent firm

faces competition from an infinite number of entrants that produce a unit of the same goods at the

marginal cost χ > 1, which the incumbent uses as the price, yielding profits equal to π = χ − 1.

The incumbent firm and the new entrants hire research workers to innovate production. If

innovation is successful, the innovating firm (either incumbent or entrant) improves the quality
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of output by γ > 1. If the entrant innovates successfully, it drives the incumbent firm out of

business becoming the new market leader.

Innovation probability for the incumbent firm. We assume that the incumbent firm has an

innovation probability equal to:

f I = ϕnα
I /α,

where nI is the measure of research workers hired by the incumbent firm, and ϕ > 0 is the R&D

productivity of the incumbent firm. The probability of innovating holds decreasing returns to

scale in the R&D process, represented by the parameter α < 1, consistent with the empirical

evidence in Klette and Kortum (2004).2 If the incumbent firm successfully innovates, operating

profits increase proportionally to the size of the innovation, thus raising profits to γπ.

Innovation probability for entrant firms. In each sector, there is a continuum of potential

entrants, indexed by k ∈ [0, 1], where k also tracks the level of idiosyncratic R&D productivity

of each entrant. Without loss of generality, we assume that upon entry, each entrant k hires

a unitary measure of research workers at the equilibrium wage. If innovation is successful,

creative destruction takes place and the innovating entrant gains operating profits γπ, while the

incumbent firm and the remaining entrants earn zero profits and exit the market. Each entrant

has a different capacity to innovate that is proportional to the idiosyncratic productivity and

equal to ψk, where k is the level of idiosyncratic R&D productivity of new entrants, and ψ is a

parameter that scales all entrants’ innovation probability.

In equilibrium, free entrance drives profits to zero, requiring the entrant firms to have

sufficiently high innovating probability (k) to stay in the market and try to innovate —we discuss

the determination of the threshold of idiosyncratic productivity later in the section when we

2As we discuss in Section 5, we calibrate the quantitative model to ensure that the innovation probability f I (nI)
is between zero and one in all states of the economy.
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derive the model equilibrium. Thus, the innovation probability for entrants is equal to:

fE =
∫ 1

k
ψkdk =

ψ
(

1 − k2
)

2
, where 0 ≤ k ≤ 1. (1)

Expected growth rate of output. The expected, growth rate of output (g) in each sector weights

the value of the innovated output with the probability of innovation from the incumbent firm

and the entrant firms, thus being equal to:

g = γ ( f I + fE) .

3.2 The supply of research workers

The aggregatre supply of research workers in the economy is fixed to L, and the labor supply

(L (w)) in each sector is proportional to the sectoral-to-aggregate-wage ratio:

L (w) =
L
J

( w
W

)1/ϵ
, (2)

where J is the number of sectors, and w and W are the sectoral and aggregate wage indices,

respectively, the latter taken as given by firms in each sector. The variable ϵ > 0 is the inverse of

elasticity of the labor supply for research workers that generates the standard, positively-sloped

supply curve; i.e., L′ (w) > 0.

The labor marker clears in each sector, such that the supply of researchers (L (w)) equates the

demand from the incumbent and entrant firms, yielding:

L (w) = nI + (1 − k) .
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3.3 Equilibrium

The incumbent firm behaves strategically in hiring research workers since the established wage

will influence the supply of researchers to the entrant firms and therefore their innovation

probability, threatening the survival of the incumbent firm. Thus, the equilibrium in the model

comprises two stages. In the first stage, the incumbent firm sets the prevailing wage for the sector,

which determines the supply of researchers to the sector, and it then hires research workers at the

end of the first stage. In the second stage, new entrants hire from the remaining pool of research

workers taking the wage in the sector as given. No entrant has the incentive to deviate from the

sectoral wage set by the incumbent firm, becaue a lower wage would lead to zero hiring, while a

higher wage would decrease expected profit. To determine the equilibrium, we solve the model

by backward induction, starting from the second stage.

Stage 2: Entry decision of the entrants

The potential new entrant enters the economy if the expected profit, ψkγπ − w, is positive. The

free entry condition drives the profits of firms to zero, determining the threshold of productivity

(k (w)) compatible with non-negative profits:

k (w) = w/ (ψγπ) . (3)

By combining equations (1) and (3), we obtain the probability of successful innovation from the

new entrant that triggers creative destruction:

fE (w) = ψ

[
1 −

(
w

ψγπ

)2
]

/2, (4)

which shows that the higher equilibrium wage reduces the measure of entry and suppresses the

process of creative destruction by decreasing the profitability of new entrants.

Next, we show that no entrant has an incentive to deviate from the wage w set by the

incumbent. First, all research workers have a job at the wage of w in equilibrium, so none of
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them is willing to accept any wage lower than w. As a result, there is no point for the entrant

firm to set wages lower than w. Second, entrants also have no incentive to raise wages above w

as it will only hurt their profits.

Stage 1: Wage setting of the incumbent

The incumbent firm chooses the number of research workers and set the wage to maximize the

profits:

max
nI ,w

f I (nI) γπ + [1 − f I (nI)− fE (w)]π − nIw (5)

subject to the equilibrium in the labor market:

nI + [1 − k (w)] = L (w) . (6)

In equation (5), f I (nI) is the probability that the incumbent firm successfully innovates, obtaining

the profit γπ. The second term encapsulates the profits when the innovations by the incumbent

firm and the entrants are unsuccessful, which occurs with probability 1 − f (nI)− fE (w), obtain-

ing the initial profit π. The third term is the wage cost for research labor. Between the second

and the third term, there is a hidden term, fE(w) · 0, indicating that the incumbent firm leaves

the market and obtains zero profit with creative destruction probability, fE(w).

Equation (6) is the clearance condition in the labor market that equates the demand and

supply for research workers. It implies that nI is a function of w, with nI (w) = k (w) + L (w)− 1.

Since L′ (w) > 0 and k′ (w) > 0, from equations (2) and (3), respectively, it yields:

n′
I (w) = k′ (w) + L′ (w) > 0, (7)

such that the hiring of the incumbent firm are positively related to the equilibrium wage, as

stated in the next lemma.

Lemma 1. The hiring of the incumbent firm increases with wage.
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Lemma 1 implies that the incumbent firm must hire more workers to increase the equilibrium

wage, or, conversely, it must increase the wage to hire more workers.

Using equations (3) and (7), we obtain the impact of hiring by the incumbent firm on the

entrance of new firms in the economy:

d (1 − k)
dnI

= − k′ (w)

k′ (w) + L′ (w)
< 0, (8)

where 1 − k is the measure of new entrants.3 Equation (8) shows three important results. First,

the increase in the hiring of research workers by the incumbent firm reduces the measure of new

firms that enter the economy, giving rise to the motive of defensive hiring to be discussed soon.

Second, the negative effect of the incumbent firm’s hiring on new firm entry is stronger when the

labor supply of researchers is inelastic (i.e., L′ (w) is low). Thus, the power of the incumbent firm

to influence the number of new entrants decreases with the elasticity of labor supply of research

workers. Third, the negative effect of the incumbent firm’s hiring is stronger when the threshold

productivity has a higher sensitivity to wage (k′ (w)). From equation (3) it is straightforward to

show that the sensitivity increases when the expected profits from innovation (i.e., ψγπ) are low.

The next proposition summarizes the results.

Proposition 1. The hiring of research workers by the incumbent firm deters the entrance of new firms.

The effect is stronger with inelastic labor supply and low expected profits from innovation for the entrants.

3.4 Optimal conditions for the incumbent firm

Before solving the two-stage problem outlined in the previous section and deriving the equi-

librium of the model, we study the equilibrium of the competitive and the classic monopsony

markets, which will allow us to compare the equilibrium of the system to the equilibrium in the

3In particular,
d (1 − k)

dnI
= − dk

dnI
= − dk/dw

dnI/dw
= − k′ (w)

k′ (w) + L′ (w)
,

where dnI/dw = k′ (w) + L′ (w) comes from equation (7).
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alternative competitive and monopsonistic markets.

Competitive market

In the competitive market, the incumbent firm takes the wage as given and set the level of

employment to solve the following maximization problem:

max
nI

f I (nI) γπ + [1 − f I (nI)− fE (w)]π − nIw,

which yields the standard optimal condition of the labor demand curve that equates marginal

product of labor to wage:
wage︷︸︸︷

w =

mpl︷ ︸︸ ︷
(γ − 1)π f ′I (nI) .

Classic monopsony market

In the classic monopsonistic market, the incumbent firm internalizes the effect of wage on

labor supply while taking as given the measure of entry (1 − k), and the probability of creative

destruction ( fE). The maximization problem of the incumbent firm becomes:

max
nI ,w

f I (nI) γπ + [1 − f I (nI)− fE]π − nIw

subject to:

nI + (1 − k) = L (w) .

The key difference of the above constraint from equation (6) is that the classic monopsony

incumbent firm does not internalize the influence of w on 1 − k and fE.

The first-order condition is:

wage︷︸︸︷
w =

mpl︷ ︸︸ ︷
(γ − 1)π f ′I (nI)−

classic monopsony︷ ︸︸ ︷
nI (w) /L′ (w)
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The above condition shows that the incumbent firm reduces hiring (or, equivalently, cuts the

wage) to increase profits since it internalizes that hiring introduces additional costs by increasing

wages. The distortion due to the standard monopsony power is stronger when the labor supply

is inelastic (i.e., when L′ (w) is low).

Benchmark model with strategic motives by the incumbent firm.

The incumbent firm in our model internalizes the effect of the equilibrium wage on the labor

supply as well as the probability of creative destruction. By substitute nI with nI (w) = L (w) +

k (w)− 1 in equation (5), the incumbent’s problem becomes:

max
w

f I (nI (w)) (γ − 1)π + [1 − fE (w)]π − nI (w)w.

The first-order condition is:

(γ − 1)π f ′I (nI) n′
I (w)− f ′E (w)π − n′

I (w)w − nI (w) = 0

Applying equation (1), we re-write the above equation as:

wage︷︸︸︷
w =

mpl︷ ︸︸ ︷
(γ − 1)π f ′I (nI) +

defensive hiring︷ ︸︸ ︷
k (w) k′ (w) −

classic monopsony︷ ︸︸ ︷
nI (w)

k′ (w) + L′ (w)
(9)

The LHS of equation (9) is the wage. The first term on the RHS of equation (9), (γ − 1)π f ′

is the marginal product of labor (mpl) for the incumbent firm. The incumbent firm’s incentive

is distorted due to the incumbent firm’s monopsony power, as reflected by the second term

on the RHS of Equation (9),
(
kk′ − nI

)
/
(
k′ + L′). In the numerator of this term, kk′ captures

the incumbent firm’s incentive of setting a higher wage (equivalently, hire more) to deter entry.

This is effective because a higher wage raises the threshold of entry (k′ > 0), which reduces the

probability of creative destruction. We refer to this as the defensive hiring incentive. nI captures
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the incumbent firm’s incentive of setting a lower wage (equivalently, reducing hiring), similar to

the classic model of monopsony. We refer to this as the classic monopsony incentive. Whether the

incumbent firm would set a higher or lower wage than in the competitive case depends on the

relative strength of the two incentives.

Case 1: kk′ > nI When kk′ is high, the incumbent finds it easier to “manipulate” the entrants’

entry decision. When nI is low, the incumbent firm is less concerned with the cost of the wage

increase. As a result, when kk′ > nI , the incumbent firm over-hires and sets a higher wage than

in the competitive case, which leads to a lower firm entry. This effect is magnified when L′ (w) is

low (which decreases the denominator of equation (9)): firm entry is further restrained when

research labor supply is inelastic. In contrast, when the research labor supply becomes infinitely

elastic (L′ (w) → +∞), the distortion is diminished, and the model converges to the competitive

case. Interestingly, our analysis shows that small incumbents are more likely to use defensive

hiring than large incumbents, which might be opposite to many’s presumptions.

Case 2: kk′ < nI As nI is high, the incumbent firm is highly concerned with the wage cost.

When kk′ is low, the incumbent finds it more challenging to “manipulate” the entrants’ entry

decision. As a result, the classic monopsony incentive dominates, and the incumbent firm

under-hires and sets a lower wage than in the competitive case, which leads to higher firm entry.

Like Case 1, the effect is amplified when L′ (w) is low: firm entry is further promoted when

research labor supply is inelastic.

The conditions for defensive hiring to dominate Whether kk′ is higher than nI depends on

several factors. The first is the R&D production function of the incumbent firm, ϕnα
I /α, which

affects the level of nI . If the incumbent firm’s R&D productivity, ϕ, or the curvature parameter, α,

is low, the optimal hiring nI must also be low. As a result, the incumbent firm finds it less costly

to raise wage, and defensive hiring is likely to dominate.

The second is the expected profit of innovation for the entrants, ψγπ, which negatively affects
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k and k′ according to equation (3). When innovation is unprofitable for the entrants, both k and

k′ are high. In this case, the incumbent firm finds it easy to influence the entrants’ entry decision,

and defensive hiring is likely to dominate. The following proposition summarizes the above

arguments.

Proposition 2. The incumbent firm over-hires when (I), the incumbent’s R&D productivity is low; (II),

the incumbent firm has a strong degree of decreasing returns to scale in R&D; (III), entrants’ expected

profits from innovation is low. Moreover, the extent of over-hiring is stronger with inelastic labor supply.

Proposition 2 outlines the conditions for defensive hiring to be the dominant force and shows

that inelastic labor supply magnifies defensive hiring. Interestingly, conditions (I) and (III) in

Proposition 2 are related to the notion of “ideas are getting harder to find” (Bloom et al., 2020),

which implies that ψ and ϕ, i.e., the incumbent and entrants’ R&D productivities, are decreasing,

and therefore, conditions (I) and (III) in Proposition 2 are more likely to hold. In other words,

our results indicate that defensive hiring will be more prevalent when ideas are getting harder

to find.

4 Empirical evidence

This section establishes six new empirical findings. The first three facts estimate the elasticity of

the labor supply of research workers, showing it is low on average, declines over time, and is

heterogeneous across research fields and industries. The remaining three facts test the predictions

of our theory, showing the effect of spending on R&D by incumbent firms on creative destruction

and TFP growth: incumbent firms’ R&D expenditure negatively predicts firm entry and industry

productivity growth while increasing the life expectancy of incumbent firms. Consistent with

the theory, we show these dynamics are stronger in industries with an inelastic supply of R&D

workers.
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4.1 The supply elasticity of research labor

Data on inventors and patents’ value. We focus on the inventors who are a subset of research

workers. We obtain information about inventors from patent application records constructed by

the US Patent and Trademark Office (USPTO), which contains over seven million inventors and

eleven million patent applications from 1970 to 2019.4 These applications are categorized into

127 Cooperative Patent Classification (CPC) classes (e.g., Organic Chemistry), to which we refer

as research fields. About 64-percent of the applications are successfully patented.

Our first goal is to measure inventors’ allocation of research labor supply across different

research fields. We denote the number of inventor ι’s patent applications in year t as mt(ι). We

assume that inventors allocate research effort evenly across patents. Normalizing each inventor’s

yearly research effort to one implies that inventor ι spends 1/mt(ι) unit of labor on each patent.

Then we use Ωk,t(ι) to denote the subset of inventor ι’s patent applications in field k. For

patents that belong to multiple fields, we weight them by 1/ni, where ni is the number of fields

that patent i belongs to. Hence, by working on patent i ∈ Ωk,t(ι), inventor ι supplies 1/[mt(ι)ni]

to field k. An inventor’s research labor supply to field k is thus computed as:

lk,t(ι) = ∑
i∈Ωk,t(ι)

1
mt(ι)ni

.

Finally, the total research labor supply to field k is the sum of lk,t(ι) across inventors:

Lk,t = ∑
ι

lk,t(ι).

Our second goal is to study what determines an inventor’s supply of research labor to a

specific field. A natural candidate is the expected monetary payoff from research.5 We assume

that the monetary payoff for an inventor’s research labor supply is proportional to the patent’s

4We exclude the recent applications after 2019 as many of them have not been patented due to the long
examination process.

5Other factors include the pure utility associated with interest, curiosity, gain of reputation, social responsibility,
and so forth, which are hard to measure and are beyond the scope of this paper.
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market value adjusted for the number of coinventors and the labor supply of these coinventors.

This assumption can be justified by the fact that firm ownership, such as stocks and options,

is an essential part of compensation for many researchers (e.g., machine learning engineers in

tech companies). Moreover, the values of incentive pay (e.g., bonuses), promised wage raises,

and promotion opportunities are likely to increase with the researchers’ contribution to the

companies’ market value. With the above assumptino, the payoff per unit of research effort on

patent i is:

wi =
vi[

∑ι∈Φi
1/mt(ι)

] ,

where vi is patent i’s real market value constructed by Kogan et al. (2017), based on how stock

prices react to the announcement of patents by the USPTO. Φi is the set of coinventors of patent

i. As discussed above, 1/mt(ι) is each coinventor’s effort on patent i, and hence, ∑ι∈Φi
1/mt(ι)

is the total effort across coinventors.

An alternative measure for the inventor’s monetary payoff is inventors’ wages, as considered

by Akcigit and Goldschlag (2023) using tax data. While inventors’ wages are an accurate measure

for the contemporary “wage part” of the monetary payoff, they do not reflect changes in expected

future income associated with the research effort, either in terms of promised wage raise or

promotion opportunity, or the other nonwage compensation such as stocks and option, which

are a critical component of inventors’ monetary payoff and are likely to comove with (and hence,

captured by) patent’s market value. Hence we consider our measure complementary to Akcigit

and Goldschlag (2023).

Finally, we compute the average payoff to research effort in field k as:

Wk,t = pk,t
∑i∈Ωk,t

wi/ni

∑i∈Ωk,t
1/ni

,

where pk,t is the fraction of applications that are successfully patented, which adjusts for the

difficulty of patent application. Ωk,t is the set of patents in field k. ni is the number of fields

that patent i belongs to. We weight patents by 1/ni so that more focused patents (i.e., lower ni)
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receive heavier weights in a certain research field.

Fact 1. The research labor supply is inelastic on average

In this section, we investigate the relationship between the expected income from research and

the labor supply in the extensive margin of research workers. We would like to explore the effect

of a transitory increase in the market value of patents in a field like ORGANIC CHEMISTRY on

the research labor supply in the field. To this aim, we estimate the following regression:

ln (Lk,t) = α + ηln (Wk,t) + χt + γk + ϵk,t, (10)

where Lk,t is the total measure of research labor supply in research field k in year t. Wk,t is the

expected monetary payoff to research. Most fields experience increasing trends in the research

labor supply and expected monetary payoff, which may differ across research fields and cannot

be absorbed by a time-fixed effect. To make the series stationary, we detrend ln (Nk,t) and

ln (Wk,t) with linear trends. χt is the year fixed effect. γk is the research field fixed effect, which

purges out the long-run relationship between research labor supply and the expected monetary

payoff to research, i.e., research fields constantly yield high (vs. low) payoff would always have

high (vs. low) supply of researchers.

Shown in Column (1) of Table 1 is the full-sample estimation result. For a given research field,

a one percent increase in the market value of patents is associated with about 0.05 percent more

research labor supply. Interestingly, our point estimate for the inventors is much lower than the

popular findings for the Hicksian elasticity (i.e., steady state elasticity) of the extensive margin

labor supply that focuses on a much wider range of occupations.6 For example, Chetty et al.

(2011) find that a one percent permanent rise in wages would induce a 0.26 percent increase in

the number of workers, where workers from all occupations are pooled in the estimation. The

low value of our point estimate is intuitive since it takes a lot of time and effort for inventors to

switch to a new research field, where a deep understanding of specialized knowledge is required

6See Chetty et al. (2011) for a comparison among different definitions of labor supply elasticities.
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to innovate.

Fact 2. the elasticity of research labor supply is decreasing over time

To investigate how research labor supply elasticities evolve over time, we estimate equation

(10) separately using data before and after 1995, respectively (1995 is about the middle of our

sample).

Shown in Columns (2) and (3) of Table 1 are the estimation results. The coefficient of ln (Wk,t)

is estimated as 0.07 in the earlier subsample, much higher than the full sample result (0.05). In

contrast, the point estimate is only 0.02, much lower in the later subsample. The results suggest

that the research labor supply has been increasingly inelastic in recent decades. One possible

explanation could be the deepening of specialization of research fields.

Table 1: The market value of patents and the number of inventors: panel estimation

(1) (2) (3)
Periods 1970-2019 1970-1995 1996-2019
ln (Wk,t) 0.05*** 0.07*** 0.02**

(0.01) (0.01) (0.01)
Research field FE Yes Yes Yes
Time FE Yes Yes Yes
Adj R-squared 0.86 0.93 0.67
Observations 5,997 2,917 3,080

The data is yearly for the period 1970-2019. The dependent variable is the log supply of research
workers. The independent variable is the log expected value of patent applications.

Fact 3. The elasticity of research labor supply is heterogeneous across fields and industries

The elasticity of research labor supply might be different across research fields. Some research

fields are more accessible for new entrants to catch up with the frontier knowledge and build

new ideas, entailing a higher elasticity of research labor supply. In contrast, some other research

fields are challenging for newcomers, at least in the short run, due to strong learning by doing

that creates an advantage for incumbent researchers, knowledge structure unfamiliar to other

fields, and so forth. These would entail a lower elasticity of research labor supply.
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To quantify the research field-specific elasticity of research labor supply, we estimate the

following time-series regression for each of the 127 research fields individually:

ln (Nk,t) = αk + ηkln (Wk,t) + ϵk,t.

The coefficient of interest is ηk, which measures the elasticity of research labor supply for

research field k. Panel (A) of Figure 3 plots the distribution of ηk across 127 CPC classes, which

shows a strong heterogeneity of research labor supply elasticity among different fields. For

example, Organic Chemistry has one the most elastic research labor supplies with ηk = 0.74.

In contrast, Treatment of Nanostructures, Specific Uses, Applications, Measurement, Analysis,

or Manufacture, have more inelastic research labor supply with ηk = 0.003, among fields with

positive research labor supply elasticity. A few fields have negative research labor supply

elasticity, which might be due to measurement errors.

Different industries are exposed to research fields differently. For instance, the patents

applied by companies in Nursing and Residential Care Facilities (a four-digit NAICS industry)

are mostly concentrated in Organic Chemistry. The different exposure of industries to research

fields implies that the research labor supply elasticities across industries are different. We

measure the elasticity of research labor supply in industry j as:

ηj = ∑
k

ωj,kηk,

where ωj,k is industry j’s exposure to research field k, measured as the fraction of patents applied

by firms from industry j that belong to field k, where ∑k ωj,k = 1.7 Panel (B) of Figure 3 plots the

distribution of ηj across 31 four-digit NAICS industries. The result shows a strong heterogeneity

of research labor supply elasticity among different industries.

7An alternative method of assigning weights is to use textual analysis in patent documents to gauge the
technological components of industries. For example, Goldschlag et al. (2020).
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Figure 3: Estimates for the elasticities of the labor supply of researchers across fields and
industries
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x-axis: The elasticity of the labor supply of researchers. Panel (A) estimates across fields (CPC
classification); Panel (B) estimates across industries (four-digit NAICS industry classification).
y-axis: frequency.

4.2 The effect of R&D by incumbent firms on firm entry and industry TFP

In the following part, we establish three key facts regarding the effect of the incumbent firms’

R&D on firm entry and industry TFP. First, R&D expenditure prevents the entry of other firms

into the same industry. Second, the increase in R&D expenditure by a firm decreases the sectoral

productivity growth rate. Third, R&D expenditure increases a firm’s life expectancy, which can

be accounted for both by its positive effect on firm’s productivity and its repression on potential

competitors. For all three Facts, we show that the results are much stronger for industries with

low elasticities of research labor supply.

Data on R&D, firm entry and TFP. We use three datasets to study R&D on firm entry and

firm and industry TFP. Our primary firm-level dataset is Compustat Fundamental Annual data,

which reports listed companies’ sales, profit, employment, and R&D expenditure from 1950 to

2021. We focus on domestic companies and exclude international and multi-national companies,

who report to operate at least one foreign segment. For those domestic companies, we replace

negative R&D expenditure with zero, winsorize the top 1% of the R&D expenditure distribution,

and add one unit to all companies’ R&D expenditure. The last step changes zero R&D to one,
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which ensures that these observations would not be excluded when we take logarithm.

We obtain the sectoral TFP series from the Bureau of Labor Statistics (BLS) that provides

yearly series for the period 1987-2019 covering 90 four-digit Naics industries (e.g., Plastics

Product Manufacturing, etc.). Most of the four-digit industries are within the manufacturing

sector.

Our primary dataset for firm entry is the Business Dynamics Statistics (BDS) administered by

the US Census Bureau. BDS reports the number of firms for different age groups (from 0 to 26

years+) at the industry level. The data is yearly and covers 281 four-digit Naics industries for

the period 1978-2019. We treat firms with zero-age as new entrants and compute the entry rate

as their share in all firms.

Fact 4. Incumbent R&D negatively predicts firm entry for industries with inelastic labor

supply

Table 2: Incumbent R&D expenditure and firm entry: panel estimation

(1) (2) (3) (4)
Dependent variable Entry rate, BDS Listing rate, Compustat
R&Dj,t -0.76*** -2.45*** -1.39*** -2.45***

(0.07) (0.20) (0.08) (0.19)
R&Dj,t × ηj 3.24*** 1.33***

(0.37) (0.33)
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Adj R-squared 0.82 0.83 0.61 0.62
Observations 1339 1,339 1,696 1,677

The data is yearly for the period 1970-2019. The dependent variable is the rate of entry. The
independent variable, R&D, is the average R&D expenditure across incumbent firms. η is the
elasticity of research labor supply.

In this section, we study the relationship between incumbent R&D and new firm entry. Our

benchmark measure of entry rate is the share of newly created firms for all firms in BDS data.

We estimate the following regression at the four-digit NAICS industry level:

Entryj,t+5 = α + βR&Dj,t + γj + χt + ϵi,j,t, (11)
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where the dependent variable, Entryj,t+5, is industry j’s average entry rate from t + 1 to t + 5.

R&Dj,t is industry j’s the logarithm of the total R&D expenditure of incumbent firms from

industry j. γj and χt are industry and year fixed effects. Shown in Column (1) of Table 2 is the

estimation result. A percentage increase in incumbent firms’ R&D predicts a 0.76 percentage drop

in the yearly rate of firm entry of the same industry in the following five years, an economically

significant impact.

Next, we investigate the role of research labor supply elasticity in the impact of incumbent

firms’ R&D on firm entry by including an interaction term, R&Dj,t × ηj, as an independent

variable. Column (2) shows the results. The coefficient of the interaction term is estimated as

positive, indicating a more negative relationship between incumbent firms’ R&D and firm entry

for industries with inelastic research worker supply (i.e., ηj is low). For example, a percentage

increase in incumbent firms’ R&D expenditure is associated with -2.45% slower firm entry rate

in the following five years if research labor supply is completely inelastic, i.e., ηj = 0. In contrast,

the relationship becomes less negative, or even positive, for industries with high ηj.

Finally, we examine whether listed companies’ R&D negatively affects the rate of listing of

the same industry at the stock exchange, which reflects grow opportunity of unlisted firms that

are likely younger and smaller. To this aim, we replace the dependent variable of equation 11

with the average rate of listing (the ratio of new listing to the total number of listing) in the

following five years. Shown in Columns (3) and (4) of Table 2 are the estimation results. Higher

R&D of incumbent firms predicts slower listing of firms. The result is stronger for industries

with inelastic research worker supply, as invinced by the positive estimate of the interaction

term. The results show that R&D expenditure of listed companies makes their competitors more

difficult to become publicly traded companies, particularly in industries where research labor

supply is inelastic.
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Fact 5. Incumbent R&D negatively predicts productivity growth for industries with inelastic

research labor supply

In the following part, we show that incumbent R&D negatively predicts productivity growth of

other firms in the same industry in industries with low research labor supply elasticity.

Table 3: Incumbent R&D expenditure and sectoral productivity: panel

(1) (2) (3) (4)
Dependent variable ∆z−i,j,t+5 ∆zj,t+5
R&Di,j,t -0.06 -0.61***

(0.07) (0.22)
R&Di,j,t × ηj 0.98***

(0.37)
R&Dj,t -0.01*** -0.04***

(0.004) (0.01)
R&Dj,t × ηj 0.05***

(0.02)
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Adj R-squared 0.09 0.09 0.55 0.56
Observations 40,359 40,331 587 587

The data is yearly for the period 1970-2019. The dependent variable is the productivity growth
rate in percentage points. The independent variable, R&D, is the R&D expenditure. η is the
elasticity of research labor supply.

We first investigate the spillover effect of listed companies’ R&D on the productivity growth

of other listed companies in the same industry. In particular, we estimate the following regression

at the firm level:

∆z−i,j,t+5 = α + βR&Di,j,t + γj + χt + ϵi,j,t, (12)

where the key independent variable, R&Di,j,t, is the logarithm of listed company i’s R&D

expenditure. The dependent variable, ∆z−i,j,t+5, is the labor productivity growth of listed

companies in industry j except for company i from t to t + 5. In particular, the average labor

productivity of listed companies in industry j except for company i is computed as:

z−i,j,t =
∑i′∈Ψj,t\i yi′,j,t

∑i′∈Ψj,t\i li′,j,t
,
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where Ψk,t is the set of listed companies in industry j with employment measurements. yi′,j,t and

li′,j,t is company sales and employment. Then ∆z−i,j,t+5 is computed as (z−i,j,t+5/z−i,j,t − 1)/5.

Shown in Column (1) of Table 3 is the estimation result. R&D expenditure of a listed company

is not significantly correlated with other listed companies’ labor productivity growth. The

insignificant result can be a result of two counteractive forces. On the one hand, a firm’s

R&D can have negative spillover effects on other firms’ productivity growth by squeezing the

availability of research workers when they are scarce resources. On the other hand, a firm’s R&D

can also benefit other firms’ productivity growth via a conventional knowledge spillover channel,

particularly when they have close technological proximity (Bloom et al., 2013). However, we

show that the former negative spillover effect dominates for industries with inelastic research

labor supply.

Specifically, we examine the role of research labor supply elasticity in the spillover effect of

firms’ R&D on other firms’ productivity growth, by including an interaction term, ηj × R&Di,j,t),

as a regressor. Shown in Column (2) of Table 3 is the result: the positive coefficient of the

interaction term indicates that a firm’s R&D has a more negative spillover effect on the other

firms’ productivity growth when the industry has a lower research labor supply elasticity. For

example, a percentage increase in R&D expenditure by a listed company is associated with 0.61

percent slower labor productivity growth of other listed companies when research labor supply

is completely inelastic, i.e., ηj = 0, much stronger and more statistically significant than our

unconditional estimate in Column (1).

Given that incumbents’ R&D negatively predicts other incumbents’ productivity growth

and deters firm entry in industries with research labor supply is inelastic, it is natural to

conjecture that incumbent firms’ R&D negatively predicts industry’s TFP growth for these

inelastic industries. To this aim, we estimate the following regression at the four-digit NAICS

industry level:

∆zj,t+5 = a + bR&Dj,t + cηj × R&Dj,t + γj + χt + ϵj,t, (13)

where the dependent variable, ∆zj,t+5 is industry j’s yearly TFP growth from t to t+ 5 constructed
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by the BLS. R&Dj,t is the logarithm of total R&D expenditure of listed companies from industry

j. Shown in Columns (3) and (4) of Table 3 are the results. Column (3) indicates that R&D

expenditure of listed companies negatively predicts the industry’s TFP growth. A percentage

increase in listed companies’ R&D expenditure is associated with a 0.01 percent decline in the

industry’s yearly TFP growth in the following five years. Column (4) shows that the negative

relationship between listed companies’ R&D expenditure and industry TFP growth is much

stronger for industries with low research labor supply elasticity. For example, a 1% increase in

listed companies’ R&D expenditure is associated with a 0.04 percent decline in the industry’s

yearly TFP growth when research labor supply is completely inelastic, i.e., ηj = 0, four times

stronger than the unconditional estimate in Column (3).

The above result might seem the opposite to the prototypical finding in the literature that

posits R&D as the principal driver of economic growth. There are two caveats when interpreting

our result. First, our regression model misses the positive spillover effects of R&D across

industries, which has been found sizable and critical in accounting for the benefit of R&D on

economic growth. Second, we include industry fixed-effects, which filter out the stable and

positive relationship between R&D and productivity growth across industries. If we remove

the industry-fixed effects from our estimation, the coefficient of R&D becomes positive. This is

consistent with Jones and Williams (1998), who document that the positive relationship between

R&D and productivity growth crucially depends on their long-run cross-industry comovement.8

Fact 6. Incumbent R&D increases firm’s life expectancy for industries with inelastic research

labor supply

Finally, given the adverse role of incumbent firms’ R&D on their competitors’ entry, public

listing, and productivity growth, it is natural to conjecture that R&D increases incumbent firms’

life expectancy, which is one of the incumbent firms’ most significant concerns and the biggest

motivation for defensive hiring. We test the above hypothesis by estimating the following

8They show that the correlation between R&D and productivity growth is not significant positive once controling
for industry-fixed effects (see their footnote 14 on page 1131).
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cross-sectional regression at the firm level:

Li f eExpi,j = α + βR&Di,j + Rvni,j + γj + Birthi,j + ϵi,j, (14)

where the dependent variable, Li f eExpi,j, is the life expectancy of listed company i from industry

j, computed as the number of years between its listing and delisting years. R&Di,j is the logarithm

of company i’s average R&D expenditure. Rvni,j is the logarithm of company i’s average sales,

which controls for the effect of size on life expectancy. To compare companies within the same

industry and listed in the same year, we also control for the industry fixed effect, γj, and the

fixed effect for companies’ listing year, Birthi,j. To be consistent with the time period of our

research labor elasticity measure, we focus on companies listed after 1970 (when our patent data

starts) and delisted before 2019 (when our patent data ends).

Column (1) of Table 4 shows that increasing a company’s R&D expenditure by 10% would

extend the company’s life expectancy by 0.037 (0.1 × 0.37) years. Given that the median R&D

to sales ratio is 0.11, the cost of the above action is about 1.1% of annual sales. The following

calculation quantifies the increase in life expectancy as a part of private return on R&D. The

average ratio of profit-to-sales ratio in our estimation sample is 0.08. Increasing R&D expenditure

by 10% would enable a company to earn a profit that is about 0.30% (0.08 × 0.037) of its annual

sales, about 27.3% (0.30%/1.1%) of the R&D cost by enjoying longer life expectancy..9

Column (4) of Table 4 shows the results when we include the interaction term, ηj × R&Di,j,

as a regressor. The coefficient of the interaction term is negative, which implies that R&D has a

higher (lower) effect on companies’ life expectancy in industries with a lower (higher) elasticity

of research labor supply. Intuitively, in industries with an inelastic research labor supply, it

is easier for incumbent firms to take advantage of their monopsony power in protecting their

businesses against creative destruction. Using the proceeding calculation, in an industry with

completely inelastic research labor supply elasticity, ηj = 0, increasing R&D expenditure by 10%

would enable a company to earn a profit that is about 48.7% of the R&D cost by enjoying longer

9In this calculation, we assume that the discount rate is similar to the sales growth rate.
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life expectancy.

Table 4: Incumbent R&D expenditure and life expectancy of the incumbent firm: cross-sectional
analysis

(1) (2)
Dependent variable Life expectancy
R&Di,j 0.37*** 0.66***

(0.05) (0.13)
R&Di,j × ηj -0.50**

(0.21)
Revenue 0.40*** 0.40***

(0.04) (0.04)
Industry FE Yes Yes
Cohort FE Yes Yes
Adj R-squared 0.42 0.42
Observations 7,429 7,392

The data is yearly for the period 1970-2019. The dependent variable is the life expectancy of the
incumbent firms. The independent variable, R&D, is the logarithm of average R&D expenditure.
η is the elasticity of research labor supply. Revenue is log of average revenues from sales.

5 Quantitative model

This section develops an extended version of our simple model to study quantitive implications

and policy analysis. TBA

6 Conclusion

Our analysis shows theoretically and empirically that the interplay between monopsony power

in the market for research workers and the inelastic supply of these workers across fields and

industries is a key driver for the contrasting persistent decline in creative destruction and

productivity growth occurring together with the substantial increase in R&D spending (both

headcount and retribution of researchers) in the US economy over the past twenty years.

Our novel theory shows that these seemingly contrasting forces arise from the strategic

behavior of the incumbent firms that internalize the effect of hiring research workers for the

31



probability of competitors to innovate. In monopsony markets, this strategic behavior leads the

incumbent firms to optimally undertake what we called “defensive hiring” and overhire talents

to deter innovation from the entrant firms and preserve market dominance. This mechanism

operates and is magnified by the relatively inelastic supply of research workers.

We empirically assess our mechanism and test the theoretical predictions of the model on

creative destruction and productivity growth by assembling a novel dataset that combines

information on inventors from the universe of patent applications in the US, linking researchers

to the stock market values of their inventions, the spending on R&D by incumbent firms and the

rate of entrance of new firms across 281 four-digit Naics industries. The novel dataset empirically

validates the predictions of our theory, showing that the elasticity of the supply of researchers is

low (equal to 0.05 on average) and it has steadily declined since the mid-1990s (to 0.02); spending

on R&D by incumbent firms is negatively related to the rate of creative destruction and the

growth of sectoral TFP, while increasing the life expectancy of incumbent firms. Furthermore,

these relationships are stronger in industries with inelastic supply of R&D workers, consistent

with the predictions of our theory.

An extended version of our simple model outlines the quantitative relevance of our mecha-

nism for productivity growth, creative destruction, and economic policy. TBA.

Our analysis points to several fruitful extensions for future research. Our theory attributes

a central role to the inelastic labor supply of researchers, which several studies point to as

an inevitable consequence of modern production that requires highly specialized knowledge.

Specialization hinders the mobility of researchers across fields but increases innovation capa-

bilities. Measuring the specialization of knowledge, documenting its variations over time and

across research areas, and using these dimensions to investigate the implication of knowledge

specialization to technological growth in an era of high monopsony power in the labor market

would certainly be an important next step. Another fruitful extension would be to consider the

design of the education system and the study of educational policies. Specifically, would an

inter-disciplinary approach to education facilitate the movements of researchers across fields
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and industries? Would the advancement in online education, remote working, or a different

organization of knowledge-sharing practices overturn the current depressing forces on TFP and

creative destruction? These important questions remain open to future research.
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