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Abstract

We study heterogeneous beliefs about TFP growth in a complete-market production

economy where employment is hired in advance. The firm’s discount factor inherits

a wealth-weighted average of investor beliefs. Waves of optimism ripple into the

firm’s investment in hours thus tying together the equity premium and labor volatility

puzzles. We present a taxonomy of beliefs that shows the implications of different

belief models for asset prices and business cycles. We argue that when beliefs are

extrapolative, they add volatility to asset prices and labor markets, contributing to

the resolution of both puzzles. With extrapolative beliefs, the length of a cycle is

correlated with its amplitude and stock-market turnover is countercyclical. The model

is consistent with several asset-pricing and business cycle moments.
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1 Introduction

One of the most prominent economic narratives is that severe downturns are driven
by swings in investor sentiments. Tracing back to the works of Hyman Minsky,
Charles Kindleberger, and Robert Shiller—e.g., Kindleberger and Aliber (2015) and Shiller
(2000)—we find a common description: fueled by leverage, a wave of excessive optimism
about stock earnings prompts high stock prices. High stock prices, in turn, stimulate firm
investments and hiring. Periods of over-optimism end with disappointing earnings news
that bursts asset prices on Wall Street. The blast wave is felt on Main Street.

Theoretically, Harrison and Kreps (1978) and Scheinkman and Xiong (2003) formalize
the notion that asset prices can be driven by optimism waves. These papers also show that
belief heterogeneity is necessary to induce leverage which can further fuel asset prices. A
virtue of these models is that they subtly depart from the discipline imposed by rational
expectations: all agents understand the workings of the economy, but some are simply
more optimistic or pessimistic than others. While these models lay out the necessary
ingredients to study how beliefs affect asset prices and leverage, it is still unclear how
and by how much can waves of optimism percolate into the real economy.

This paper studies a benchmark economy where beliefs are a direct source of business
cycle fluctuations. This benchmark economy has no financial frictions, prices are flexible,
and markets are complete. The only link between beliefs and output is labor hiring risk.
Because hiring is decided before firms know their productivity, hours fluctuations are
driven exclusively by investor beliefs about earnings growth and risk appetite.

A growing literature is studying how beliefs impact the real economy by aggravating
nominal rigidities or financial constraints. However, to the best of our knowledge, we
do not have a frictionless benchmark economy where beliefs are a direct source of busi-
ness cycle fluctuations. Developing a frictionless benchmark economy with belief hetero-
geneity is important. First, by abstracting away market imperfections, we can provide a
qualitative and quantitative assessment of the direct effects of beliefs on the business cy-
cle. Second, we can derive general principles that extend to environments where market
imperfections amplify direct effects. Finally, a frictionless benchmark describes an ideal
economy that policies aimed at offsetting market imperfections should attempt to mimic.

The Model. In the model, belief heterogeneity impacts hiring decisions. A represen-
tative firm hires labor. Households agree to disagree about the evolution of total factor
productivity (TFP) growth. Depending on their views, households buy and sell shares of
a representative firm. We distinguish between risk aversion and elasticities of intertem-
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poral substitution by endowing households with Epstein-Zin preferences. Households
supply labor that enters a GHH static utility bundle, as in Greenwood et al. (1988).

Beliefs govern the firm’s labor demand because hiring is risky. As in Burnside et al.
(1993), labor is chosen prior to the realization of shocks. This timing induces an oper-
ational leverage channel whereby hiring becomes a risky investment, as occurs also in
labor search models.1 This feature is important to produce business-cycle fluctuations
from asset-price fluctuations. We focus on the firm’s investment in forming a workforce,
as opposed to physical capital formation, because it is understood that fluctuations in
capital investment cannot be a source of business cycles (Chari et al., 2007).2

Belief heterogeneity is essential to inducing leverage and turnover dynamics, recur-
rent themes in the optimism narratives. As a result of belief heterogeneity, households
hold long or short positions in firm shares. More optimistic households lever up their
stock holdings.

Leverage produces an internal propagation mechanism as it induces differences in risk
exposures. More optimistic agents generate capital gains when good states are realized
and vice-versa. This feature produces internal propagation because wealth-weighted be-
liefs affect asset prices. For example, when wealth-weighted beliefs are more optimistic
a greater demand for risky assets puts upward pressure on stock prices and compresses
risk premia.

In the environment, movements in discount rates affect firms’ decisions. Given that
hiring is risky, as investors’ risk appetite increases, discount rates fall. This stimulates
hiring.3 All in all, the equity premium, the equity volatility puzzle, and labor volatility
puzzles are tied together into a single puzzle.

Theoretical Results. Despite featuring Epstein-Zin preferences and an endogenous la-
bor supply, the model is highly tractable thanks to an “as if” property. Namely, the
model can be solved as if it were an endowment economy that shares the same household
stochastic discount factor (SDF) as the original economy. This property renders a tractable
characterization. Importantly, the firm making risky hiring decisions in the original econ-

1We reinterpret this form of investment in labor as a simplified version of the investment in hiring that
happens in labor-search models. Recall that in labor-search models, firms incur in sunk costs to hire workers
and, thus, there is a force toward long-lasting relationships.

2Investment is small relative to the capital stock in a business cycle model. Thus, fluctuations in invest-
ment do not meaningfully impact the production possibility frontier.

3This mechanism is grounded on evidence that risk-adjusted excess returns are high in recessions
(Lustig and Verdelhan, 2012). Lustig and Verdelhan (2012) emphasizes that due to higher capital costs,
even unconstrained firms cut back investment and hiring during recessions. Hall (2017) puts a similar
mechanism to work in a Diamond-Mortensen-Pissarides framework.
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omy uses the common SDF to put weight across states. Thus, the economy’s SDF maps
into a labor-demand factor that, ultimately, determines labor and output. This mapping
transparently demonstrates how the evolution of wealth-weighted beliefs jointly affects
asset prices and output. Furthermore, we do not make any assumptions regarding the
firm’s information about investor beliefs; the firm only needs to understand how its hir-
ing decisions affect its stock value. The solution approach may be convenient in other
environments.

When we specialize Epstein-Zin preferences to log utility, the model features an ana-
lytic solution. This analytic solution allows us to articulate a belief taxonomy. Namely, we
catalog beliefs into two broad categories with two sub-categories: One category is rank-
preserving beliefs—which we sub-catalog into optimistic and pessimistic beliefs. The
other category are rank-alternating beliefs—which we sub-catalog into extrapolative and
intrapolative beliefs. Under this taxonomy, we provide general business-cycle properties
for each belief system.

We uncover several principles regarding the amplification properties of different belief
systems. The first principle is that only extrapolative beliefs amplify business cycles in all
states—relative to rational expectations. Amplification is provoked by beliefs that boost
the firm’s discount factor during booms but depress this discount factor during busts.
Only extrapolative have this property. Only for this belief system do agents think that
current states are more persistent than they actually are.

A second principle is that only extrapolative beliefs engender risk build-up. That is,
when a fraction of households is extrapolative, the longer the boom, the deeper the bust.
This property is exclusive to extrapolative beliefs because extrapolative households con-
sistently accumulate wealth during the length of the boom. This wealth accumulation
by extrapolative agents fuels the demand for risky assets and stimulates hiring. When
the economy switches state, extrapolative agents remain relatively wealthier while at the
same time becoming the most pessimistic. This change switch in optimism by the wealth-
iest agents amplifies the rift in the economy.

A third property regards stock-market turnover, a feature that receives little attention
in the macro-finance literature. We show that when some households are extrapolative,
there is a positive correlation between stock-market turnover and measured disagree-
ment. Only for this class of beliefs is turnover particularly large when the economy enters
a recession, a property that we verify holds in the data.

The taxonomy of beliefs showcases the importance of studying belief heterogene-
ity: evidence by López-Salido et al. (2017) and Krishnamurthy and Muir (2017) shows
that risk premia are low during credit booms that are followed by subsequent crashes.
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However, without belief heterogeneity macro-finance models generate the opposite
prediction—i.e., Brunnermeier and Sannikov (2014a) and He and Krishnamurthy (2013).
Furthermore, these properties are useful to distinguish models with heterogeneity in be-
liefs from models with heterogeneity in risk aversion. The inability to distinguish belief
from risk heterogeneity is a common critique of belief models. We contend that hetero-
geneity in risk aversion cannot produce risk build up nor increased turnover during busts.

Quantitative Analysis. We conclude the paper with a quantitative evaluation of the
theory. To properly measure belief heterogeneity in the data, we exploit survey data on
earnings forecasts and estimate an econometric model to infer a distribution of beliefs. We
find evidence of substantial heterogeneity in beliefs and use the estimated distribution of
beliefs in our quantitative evaluation.

We calibrate the rest of the model following standard parameterizations. We then
use the model to perform counterfactuals across different belief systems and levels of
heterogeneity. We show that extrapolative beliefs are key to producing a large equity
premium and volatile returns, while jointly generating substantial fluctuations in hours.
The version with rational expectations fails on both dimensions. We show that by turning
heterogeneity off, the model fails in other moments.

We finally provide an external validation of the mechanism. First, we construct a time
series for a disagreement index obtained from our distribution of beliefs. We also show
that consistent with our model, this index is correlated with stock-market turnover. We
then confirm that average investor beliefs are correlated with firm-level hiring decisions,
using a similar approach to Gennaioli et al. (2016). Finally, we show that our model deliv-
ers substantial predictability of asset prices providing a reinterpretation of the Campbell-
Shiller decomposition.

We conclude by discussing some avenues for extensions. In the next section, we dis-
cuss how this paper fits in the literature and then move to the body of the paper.

Connection to the Literature. This paper is related to business cycle and asset-pricing
analysis that originates with Kydland and Prescott (1982) and Mehra and Prescott (1985),
respectively. As in our paper, a recent strand links fluctuations in risk premiums to real
business cycles. Hall (2017), Borovička and Borovičková (2019) and Kehoe et al. (2019)
explore a similar transmission mechanism to study unemployment fluctuations in the
context of the Diamond-Mortensen-Pissarides search model. Di Tella and Hall (2019)
stress the role of uninsurable idiosyncratic risk and precautionary savings.

Our paper also fits into the recent macro-finance literature that emphasizes the im-
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portance of the wealth share of special individuals (e.g., financial intermediaries) for the
business cycle. For example, He and Krishnamurthy (2011), Brunnermeier and Sannikov
(2014b), Mendo (2018), and Silva (2019), among others.

In our case, the wealth shares of non-rational investors is key. Relatedly, Detemple
and Murthy (1994), Xiong and Yan (2009), Kubler and Schmedders (2012), among oth-
ers, study how redistribution among agents due to heterogeneous beliefs affects asset
price fluctuations. More recently, Caballero and Simsek (2020a) and Caballero and Sim-
sek (2020b) show how financial trading between optimistic and pessimistic investors, by
affecting the evolution of the distribution of wealth among them, amplifies a recession
generated by a decline in risky asset valuations when output is determined by aggregate
demand. In contrast, we focus on the supply-side of the economy, and explore the role of
time-to-build as the key ingredient that connects beliefs and output fluctuations. We also
study a wide taxonomy of beliefs.

In our quantitative exploration, we assume that some agents hold diagnostic beliefs in
the spirit of Gennaioli and Shleifer (2010), this paper is also related to the literature that
explores how subjective beliefs affect the business cycle. See, for example, Eusepi and Pre-
ston (2011), Angeletos et al. (2018), Bordalo et al. (2018), and Bhandari et al. (2019), among
others. Relatedly, Adam and Merkel (2019) show that (homogeneous) extrapolative be-
liefs can explain the stock price and business cycles altogether. Both cycles are connected
as high stock prices signal profitable investment opportunities to capital producers. In
contrast to our work, these papers abstract from the role of heterogeneous beliefs.

Using multiple surveys of investor expectations, Greenwood and Shleifer (2014) pro-
vide evidence from multiple surveys that investors tend to extrapolate their expectations
from the realization of stock returns. These surveys seem to capture fundamental behav-
ior: investor surveys correlate stock market turnover (Greenwood and Shleifer, 2014), the
cyclicality of credit and leverage (López-Salido et al., 2017), and correlate with firm-level
investment decision Gennaioli et al. (2016).

Importantly, De La O and Myers (2021) provided evidence that earnings growth ex-
pectations are much more volatile than the volatility of returns. The latter finding con-
trasts with asset-pricing models because it suggests that the volatility of earnings expecta-
tions accounts for a large fraction of the volatility of the price-dividend rate. We interpret
the evidence of De La O and Myers (2021) as an upper bound on the importance of be-
liefs. To see this, if investors have irrational beliefs—they make forecast errors—and are
all identical, homogeneous Em

t = Ei
t, and hence, beliefs can drive asset prices. However,

if beliefs are heterogeneous, the contribution of forecast errors will critically depends on
how representative are surveys of market-based expectations, Em

t = Ei
t. In particular,
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survey data is not weighted by wealth.
There is also a tradition on heterogeneous beliefs, speculative behavior and bubbles,

once short-selling constraints and alternating beliefs are accounted for, as in Harrison and
Kreps (1978) and Scheinkman and Xiong (2003).4 The interaction with financial markets
is explored by Geanakoplos (2003, 2010), Fostel and Geanakoplos (2008), Simsek (2013a),
Iachan et al. (2019), among others.

Some papers have studied different transmission mechanisms of speculative behavior
and bubbles to the real sector. In Gilchrist et al. (2005), monopolistic firms can over-
come short-selling by issuing shares at a price above fundamental value, which lowers
the cost of capital and enhances investment. Bolton et al. (2006) present an agency model
in which over-investment occurs during a bubble episode due to stock-based executive
optimal compensation contracts that emphasize short-term stock performance. In con-
trast, Panageas (2005) shows that once investment subject to quadratic costs is introduced
in a model with heterogeneous beliefs and a short-selling constraint, despite the specu-
lative behavior of agents, the neoclassical q theory of investment remains valid. Related
to our work, Buss et al. (2016) study policy implications in a quantitative framework in
which agents trade for risk-sharing and speculative reasons, and speculation reduces in-
vestment and welfare by pushing the cost of capital up. As opposed to our work, these
papers focus on investment in capital rather than hours, and not all of them feature mod-
els that are amenable to quantitative exercises.

Finally, our paper is also related to the natural selection literature, which asks whether
those agents with incorrect beliefs eventually disappear. Blume and Easley (1992, 2006)
and Sandroni (2000) argue that only those with more accurate beliefs survive in the long
run in an environment with complete markets and separable preferences. However,
this result is not robust to the market structure, as shown by Beker and Chattopadhyay
(2010), Blume et al. (2018) and Cao (2018), and also not robust to preferences that are
non-separable recursive even when markets are complete, as shown recently by Dindo
(2019) and Borovička (2020). Closely related is Cao (2018), who works out the same in-
vestor problem as ours but does not link beliefs to TFP shocks in an RBC economy. In
fact, the paper studies the natural selection hypothesis in an endowment economy with

4A large literature studies other types of bubbles that emerge for reasons other than heterogeneous be-
liefs, such as the so-called “rational bubbles" (Blanchard and Watson, 1982; Santos and Woodford, 1997).
Martin and Ventura (2012) and Miao and Wang (2018) provide environments in which the collapse of ratio-
nal bubbles leads to a recession. Other recent contributions emphasize the interaction of rational bubbles
and policy, for example, Galí (2014), Hirano et al. (2015), Allen et al. (2018), and Asriyan et al. (2019). We
leave the study of the role of policy in versions of our framework that also allow for bubbles for future
research.
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incomplete markets.5

Organization. Section 2 lays out the environment and introduces the main ingredients.
Section 3 proceeds with the characterization of the equilibrium. Section 4 discusses a
special case where the solution can be obtained in closed form. Section 5 presents the
quantitative results. Section 6 concludes. All proofs of formal results are contained in the
appendix.

2 Model

2.1 Environment

We consider a two-state complete-markets economy with time indexed by t ∈ {0, 1, ..., }.
The economy is populated by heterogeneous households that differ in their beliefs re-
garding the growth of future TFP. Households hold (or issue) risk-free bonds and hold
(or short-sell) shares of a single representative firm. Differences in beliefs induce a desire
to lever. The firm hires labor one period in advance, prior to the realization of TFP. This
timing for hires links asset prices with labor demand.

The exogenous state. Total factor productivity At grows according to a two-state
Markov process:

At+1

At
= xt+1, (1)

where xt+1 ∈ {xL, xH}, 0 < xL < xH. The transition probabilities from state s to s′ are
denoted by {pss′}.

The firm. The representative firm produces a final good according to At+1hα
t+1, where

labor ht+1 is hired in period t, prior to the realization of xt+1. While firms hire and contract
the wage Wt+1 one period ahead, the wage bill is paid when production is finished.

The firm takes hours at the initial date h0 as given and hires labor in subsequent peri-
ods to maximize its value using a stochastic discount factor (SDF), Λt,t+1:

Qt = max
ht+1

Et [Λt,t+1 (πt+1 + Qt+1)] . (2)

5Below we confirm the natural selection hypothesis in an example with separable preferences and with-
out short-selling constraints. In addition, despite these recent contributions, in all simulations reported in
the paper, rational investors eventually accumulate the entire stock of investors’ wealth.
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Qt denotes the firm value and πt+1 ≡ At+1hα
t+1−Wt+1ht+1 denotes the profit (dividend).

Expectations are taken with respect to the transition probabilities {pss′} and weighted by
Λt,t+1. Because markets are complete, there is a unique SDF. Hence, there is unanimity
regarding the firm’s objective among shareholders, as we discuss in Section 3.1. Beliefs
affect employment decisions through their impact on the SDF.

Households. There is a finite number of infinite-lived investor households, indexed by
i ∈ I = {1, . . . , I} with masses {µi}, ∑i µi = 1. Household i derives utility from con-
sumption Ci,t and disutility from working hi,t. They have Epstein-Zin preferences over a
GHH consumption-labor composite:

Vi,t = (1− β)U

(
Ci,t − ξt

h1+ν
i,t

1 + ν

)
+ βU (Vi,t) , (3)

where Vi,t denotes the utility level, β the discount factor, and ξt controls the labor disutil-
ity. Vi,t is the certainty-equivalent of future utility, Vi,t = Ψ−1 (Ei,t

[
Ψ
(
U−1(Vi,t+1

)])
.

The labor disutility coefficient is indexed by lagged productivity, ξt = ξAt−1 and acts
as a long-run wealth effect—as in Jaimovich and Rebelo (2009), this ensures that hours
are stationary. We adopt functional forms: U(C) = C1−1/ψ−1

1−1/ψ and Ψ(Z) = Z1−γ−1
1−γ , where γ

controls the relative risk aversion and ψ the elasticity of intertemporal substitution (EIS).6

Since U(·) is only defined over positive values, net consumption, Ci,t − ξt
h1+ν

i,t
1+ν , must be

positive.
Household i has beliefs {pi

ss′} regarding TFP growth xt+1 from state s to s′ and forms
an expectation Ei,t accordingly. Households are dogmatic, as in Chen et al. (2012) and
Simsek (2013b): they agree to disagree and do not learn from the views of others (like in the
polarized bipartisan politics of current times). Beliefs about productivity translate into
beliefs about earnings and asset prices. Their differences are settled through financial
trades.

Household i chooses consumption Ci,t, hours hi,t, firm shares Si,t, and risk-free bonds
Bi,t to maximize (3) subject to a flow budget constraint

Ci,t + QtSi,t + Bi,t = Re,tQt−1Si,t−1 + Rb,tBi,t−1 + Wthi,t. (4)

6CRRA preferences correspond to the assumption ψ = γ−1. Given the endogenous labor supply, γ
controls but does not coincide with the risk aversion for lotteries on financial wealth (see e.g. Swanson
2018).
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We denote the household’s human wealth by:

Hi,t = Et

[
∞

∑
k=1

Λt,t+k

(
Wt+khi,t+k − ξt+k

h1+ν
i,t+k

1 + ν

)]
. (5)

Human wealth is the present discounted value of future net labor income. Net labor income
equals the difference between labor earning minus labor disutility. The present value is
discounted using the SDF Λt,t+k = ∏k

j=1 Λt+j−1,t+j. The SDF is the same as the one used
to value firms.

Households face a natural borrowing limit Re,tQt−1Si,t−1 + Rb,tBi,t−1 + Wthi,t −

ξt
h1+ν

i,t
1+ν ≥ −Hi,t, given Si,−1 and Bi,−1, where Rb,t denotes the return on the risk-free bond

and Re,t =
Qt+πt
Qt−1

the return on equity. This borrowing limit corresponds to the maximum
households can borrow without violating the non-negativity of their consumption net of
labor disutility.

SDF and Equilibrium. The SDF can be inferred from the process from asset returns
through no-arbitrage conditions:

1 = Et

[
Λt,t+1

πt+1 + Qt+1

Qt

]
, 1 = Et [Λt,t+1Rb,t+1] . (6)

A competitive equilibrium is defined next.

Definition 1 (Competitive equilibrium). Given initial bond holdings and shares
{Bi,−1, Si,−1}I

i=1 and hours h0, a competitive equilibrium is a set of stochastic process for quanti-
ties {{Ci,t, hi,t, Bi,t, Si,t}I

i=1, ht} and prices {Wt, Rb,t, Qt} such that

(i) {ht+1} maximizes (2) given wages Wt and the SDF Λt,t+1.

(ii) {Ci,t, hi,t, Bi,t, Si,t} maximizes (3) subject to (4) given prices, for i ∈ I .

(iii) Markets for goods, labor, bonds, and shares clear

I

∑
i=1

µiCi,t = Athα
t ,

I

∑
i=1

µihi,t = ht,
I

∑
i=1

µiBi,t = 0,
I

∑
i=1

µiSi,t = 1. (7)

3 Characterization

We now present a recursive representation of the Markov equilibrium in the exogenous
state s and an aggregate endogenous state variable X, to be revealed below. The law of
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motion of X is given by a function χ to be solved for, i.e., X′ = χ(X, s, s′). All aggregate
variables are functions of X and s, e.g. Re,t+1 = Re(Xt, st, st+1).

We proceed as follows: First, we reduce the investor’s problem, which originally in-
cludes labor supply and portfolio decisions, into a consumption-savings problem without
labor. We then obtain explicit expressions for consumption and portfolio choices under
the alternative representation. Finally, we recover labor, consumption, and asset prices in
the original problem from the alternative representation.

3.1 Household’s problem

The household problem is a portfolio problem with endogenous labor. In general, the
combination of portfolio problems with labor choice complicates the rendering of closed-
form expressions.7 Thanks to complete-markets and GHH preferences, we show an as-if
result: the original problem can be derived from a modified portfolio the problem without
reference to labor decisions.

Toward that characterization, we first observe that under GHH preferences, there are
no wealth effects. As a result, all households have the same first-order condition for their
labor choice:

hi,t = ht ≡
(

Wt

ξt

) 1
ν

. (8)

Because the labor supply is the same for all agents, so is their human capital. Thus from
now on, we drop the agent subscript from their human capital,Hi,t+1 = Ht+1.

Considering the optimal labor choice, we can define the return to human wealth:

Rh,t+1 ≡
Wt+1ht+1 − ξt+1

h1+ν
t+1

1+ν +Ht+1

Ht
.

That is, we treat human wealth as an asset where labor income minus its disutility,
Wt+1ht+1− ξt+1h1+ν

t+1 (1 + ν)−1 is its dividend. With the return to human wealth, we recast
the households’ flow budget constraint:

C̃i,t + QtSi,t + Bi,t +Ht = Re,tQt−1Si,t−1 + Rb,tBi,t−1 + Rh,tHt−1 ≡ Ni,t (9)

where C̃i,t ≡ Ci,t − ξt
h1+ν

t
1+ν defines net consumption and Ni,t defines total wealth. The in-

vestor’s total wealth, Ni,t, is the sum of financial and human wealth. Total wealth funds

7With homothetic preferences and no labor supply, the coefficient of relative risk aversion is indepen-
dent of wealth. Labor adds ’background risk’ that causes the pricing kernel to exhibit declining relative
risk-aversion in financial wealth.
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the terms in the left-hand side: current net consumption and the future holdings of stocks,
bonds, and human wealth.

Observe that the household’s objective is to maximize net consumption. Thus, from
the modified budget constraint, (9), it is as if households hold portfolios of bonds and
two risky assets: stocks and human wealth. However, because the returns to stocks and
human wealth are perfectly correlated, only the exposure to risk in total wealth matters,
regardless of the portfolio composition.

Given that the exposure to risk in total wealth is the only thing that matters for the
household, it is natural to work with the sum of stocks and human wealth as the sole
risky asset, which we call the surplus claim. The price of the surplus claim, is At−1Pt,
where Pt is given by

Pt = Et

[
∞

∑
k=0

Λt,t+k

At−1

(
At+khα

t+k − ξt+k
h1+ν

t+k
1 + ν

)]
.

The dividend of the surplus claim is the social surplus: the sum of output minus labor
disutility—both measured in terms of goods. We denote by Rr(X, s, s′) the return on the
surplus claim. As we show formally in Appendix A.1, the households’ problem can be
written in terms of net consumption and the exposure to the surplus claim:

Problem 1 (modified household’s problem).

Vi(N, X, s) = max
C̃i,ωi

(1− β)U
(
C̃i,t
)
+ βU (Vi(N, X, s)) , (10)

where Vi(N, X, s) = Ψ−1 (Ei
[
Ψ
(
U−1(Vi(N′, X′, s′)

)
|N, X, s

])
, N′ ≥ 0, and subject to:

N′ = Ri,n(X, s, s′)(N − C̃i), Ri,n(X, s, s′) = (1−ωi)Rb(X, s) + ωiRr(X, s, s′). (11)

In this problem, the household only chooses net consumption C̃i and his exposure to
the surplus claim ωi. We recover {Ci,t, hi,t, Si,t, Bi,t} in the original problem through the
following definitions:

Wt = ξthν
t , Ci,t = C̃i,t +

ξth1+ν
t

1 + ν
, QtSi,t =

ωi,t

ωe,t
(Ni,t− C̃i,t)−

ωh,t

ωe,t
Ht, Bi,t = Ni,t−Ht−QtSi,t− C̃i,t,

where ωk,t satisfies Rk,t = ωk,tRr,t + (1−ωk,t)Rb,t, for k ∈ {hi, e}.
Complete markets are key to this result: with complete markets, there is a combination

of bonds and the surplus claim that yields the same payoffs as human wealth. Thus, the
investor’s problem is akin to a problem where human wealth is traded and could be sold
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at time zero, as any other financial asset. Notice that although human wealth is constant
across households, it influences their individual portfolios: The stock holdings, QtSi,t, are
given by the desire to expose total wealth to risk, ωi,t(Ni,t − C̃i,t), minus the exposure
inherent from labor income, ωh,tHt.

Solution to the modified household’s problem. The solution to the modified house-
hold problem is as in models with homothetic preferences and linear budget sets: it ad-
mits aggregation and portfolio separation. The next lemma provides a characterization
of the value function, the consumption function, and the Euler equations of investor i.

Lemma 1 (Consumption and Euler equations). The household’s value function takes the form:

Vi(N, X, s) = U (vi(X, s)N) , (12)

where vi(X, s) denotes the wealth multiplier. The consumption-wealth ratio ci(X, s) = C̃i(N,X,s)
N

and Euler equations for investor i ∈ I are given by

(i) Consumption-wealth ratio.

ci(X, s) =
(β−1 − 1)ψRi(X, s)1−ψ

1 + (β−1 − 1)ψRi(X, s)1−ψ
, (13)

whereRi(X, s) ≡ Ψ−1 (Ei [Ψ (v(X′, s′)Ri,n(X, s, s′)) |X]).

(ii) Euler equation for an asset j ∈ {r, b}.

1 = Ei
[

Λi(X, s, s′)Rj(X, s, s′)
]

, (14)

where, for θ ≡ 1−γ
1−ψ−1 , the investor’s SDF is given by

Λi(X, s, s′) = βθ

(
ci(χ(X, s, s′), s′)N′

ci(X, s)N

)− θ
ψ

Ri,n(X, s, s′)−(1−θ). (15)

(iii) The wealth multipliers satisfy:

vi(X, s) = U−1 [U (ci(X, s)) + βU (Ri(X, s) (1− ci(X, s)))] . (16)

The lemma shows that the value function equals the static utility evaluated at
vi(X, s)N. The wealth multiplier vi(X, s) is a measure of welfare: vi(X, s)N corresponds
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to the constant consumption level that achieves the investor’s expected utility.8

The consumption-wealth ratio of investor i given in (13) coincides with the
consumption-wealth ratio of a deterministic problem with return Ri(X, s). In turn,
Ri(X, s) is a risk-adjusted portfolio return with states weighted by the multiplier v(X′, s′).
The effect ofRi on consumption depends only on the EIS coefficient, ψ, that captures sub-
stitution and income effects. When ψ = 1, income and substitution effects cancel out; the
consumption-wealth ratio is ci(X, s) = 1− β. The following section derives several re-
sults under this parameterization.

The equations given by (14) correspond to the Euler equations that yield the portfolios
weights ωi. Since (14) holds for every agent, and there are an equal number of equations
(for each household) as states, all agents value payoffs in different states by the same
amount regardless of their beliefs.

Finally, equation (16) provides a recursion to obtain the wealth multiplier vi(X, s).

Expressing portfolios in terms of asset prices and beliefs. The no-arbitrage conditions
(6) coincide with the Euler equations if we replace individual beliefs and discount fac-
tors by objective probabilities and the economy-wide SDF. Hence, the SDF of i can be
recovered from:

Λi(X, s, s′) =
pss′

pi
ss′

Λ(X, s, s′).

Thus, i’s SDF is the economy-wide SDF, scaled by the ratio of objective to subjective prob-
abilities. In turn, given the objective probabilities, Λ(X, s, s′) can be recovered from ob-
served asset prices, by inverting the no-arbitrage conditions (6),

Λ(X, s, s′) =
1

pss′

|Re
r(X, s,−s′)|
∆Rr(X, s)

.

The SDF depends on the excess return of the risky asset, Re
r(X, s, s′) ≡

Rr(X, s, s′)/Rb(X, s) − 1, relative to the difference in realized returns ∆Rr(X, s) ≡
Rr(X, s, H)− Rr(X, s, L), a measure of risk.9

So far we have observed that investors agree on the value of one unit of consump-
tion state by state, despite of disagreeing on their likelihood. For this, investors must be
exposed to risk differently. In particular, relatively optimistic investors must be dispro-
portionately levered, consistent with the optimism-waves narratives.

8This term is analogous to Lucas (1987) measure of the welfare cost of business cycle—the constant level
of consumption that achieves the same utility as in the original stochastic economy.

9Notice that [Rr(X, s, s′) − Rb(X, s)]/∆Rr(X, s) = [Re(X, s, s′) − Rb(X, s)]/∆Re(X, s), so we can use
stocks or the surplus claim interchangeably.
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The next lemma characterizes households’ risk exposure (their portfolio weight in the
surplus claim) in terms of the economy-wide SDF, market prices, and their beliefs.

Lemma 2 (Portfolio share). The shares of total wealth invested in the risky asset are

ωi(X, s) =
1

∆Rr(X, s)

[
p̃i(X, s, H)

ps,HΛ(X, s, H)
− p̃i(X, s, L)

ps,LΛ(X, s, L)

]
, (17)

where p̃i(X, s, s′) is

p̃i(X, s, s′) =
(pi

ss′)
1
γ [vi(χ(X, s, s′), s′)|Re

r(X, s, s′)|]
1
γ−1

∑s̃′∈{L,H}(pi
ss̃′)

1
γ [vi(χ(X, s, s̃′), s̃′)|Re

r(X, s, s̃′)|]
1
γ−1

.

See Appendix A.3. Lemma 2 describes how portfolio shares depend on the distorted
probabilities p̃i(X, s, s′) and pss′ ×Λ(X, s, s′). The portfolio share of household i is increas-
ing in pi

sH; relatively optimistic investors hold more of the risky asset.
The portfolio weight ωi(X, s) given by (17), is close to the ubiquitous Merton formula

(see Merton (1969)), which relates portfolios to the expectation and variance of excess
returns. In particular, as shown in Appendix A.3, ωi(X, s) is approximately given by:

ωi(X, s) =
µi,r(X, s)
σ2

i,r(X, s)
+O(ε). (18)

where we use the following approximation: Ei[Re
r(X, s, s′)] = µi,r(X, s)ε,

Vari[Rr(X, s, s′)] = σ2
i,r(X, s)ε, and Rb(X, s) = 1 + rb(X, s)ε and log utility.

The takeaway from the approximation is that, as the expected excess return µi,r(X, s)
is increasing in pi

sH, more optimistic investors hold larger positions in the risky surplus
claim. Thus, heterogeneity in beliefs translates into heterogeneity in portfolio shares. As
a result, agents will be differently exposed to risk, their wealth share will fluctuate and
this process will feedback into the economy-wide stochastic discount factor.

3.2 Firm’s problem

We turn to the firm’s hiring decision. The first-order condition of the firm yields the labor
demand ht+1:

Et

[
Λt,t+1

(
αAt+1hα−1

t+1 −Wt+1

)]
= 0⇒ αLthα−1

t+1 = wt+1, (19)
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where wt+1 ≡Wt+1/At denotes a TFP-detrended wage. We dub Lt the labor demand factor
(LDF). The LDF is the risk-neutral expectation of productivity growth:

Lt = Et

[
Λt,t+1

Et[Λt,t+1]
xt+1

]
.

Note that pss′Λt,t+1
Et[Λt,t+1]

is the risk-neutral probability at time t, see e.g. Duffie (2010) for a dis-
cussion. The LDF is consistent with a zero average labor wedge under the risk-adjusted
expectations.

Recall that at t, the firm chooses future labor, ht+1. Hence, current labor ht depends on
the previous period’s LDF. Hence, Lt−1 is an endogenous aggregate state variable with
law of motion:

L′(X, s) =
psLΛ(X, s, L)

psLΛ(X, s, L) + psHΛ(X, s, H)
xL +

psHΛ(X, s, H)

psLΛ(X, s, L) + psHΛ(X, s, H)
xH.

Expressing the labor demand factor in terms of asset prices. Let Es[zs′ ] denote the
conditional mean and σs[zs′ ] denote the conditional volatility (standard deviation) of a
variable zs′ given s, using the objective probabilities pss′ . The next proposition presents a
convenient representation for the LDF:

Proposition 1. The risk-neutral expectation of next period productivity growth is given by

L′(X, s) = Es[xs′ ]−
Es[Re

r(X, s, s′)]
σs[Re

r(X, s, s′)]︸ ︷︷ ︸
price of risk

σs[xs′ ]︸ ︷︷ ︸
quantity of risk

. (20)

where the Sharpe ratio is
Es[Re

r(X, s, s′)]
σs[Re

r(X, s, s′)]
=

σs[Λ(X, s, s′)]
Es[Λ(X, s, s′)]

.

See Appendix A.4. Proposition 1 shows that the LDF depends on two components:
First, a quantity of risk, the underlying risk in productivity growth, σs[xs′ ]. Second, a price
of risk, the required market compensation per quantity of risk. This price of risk is propor-
tional to the volatility of the SDF. Thus, the LDF and the SDF are intimately connected.

Discussion: on the firm’s objective. Given that labor is chosen in advance, hiring is
risky. Hence, we must specify the SDF used by firms. This raises the question of what
is an appropriate SDF. Under complete markets assumption, any pair of beliefs/SDF that
correctly price stocks and bonds leads to the same firm value. In turn, the firm value
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is maximized using the firm’s first-order condition under the economy-wide SDF. Every
shareholder, regardless of their beliefs, agrees on what labor decision maximizes the firm
wealth. While we assumed that firms compute expectations using the objective probabil-
ities, any beliefs by managers would deliver the same labor market dynamics. How to
determine the firm’s objectives away from complete markets is still a matter for discus-
sion in economics, see e.g. the discussion in Geanakoplos et al. (1990).

3.3 Labor Market Equilibrium

We combine the labor supply and demand schedules, equations (8) and (19), to obtain the
labor market equilibrium:

h(L) =
(

αL
ξ

) 1
1+ν−α

, w(L) = ξ

(
αL
ξ

) ν
1+ν−α

. (21)

Given that hours and wages are determined solely by the LDF, L, realized profits also
depend on the LDF and realized productivity growth: 10

π(L, s) = xs

(
αL
ξ

) α
1+ν−α

[
1− α

L
xs

]
.

Because labor is chosen in advance, profits may be negative, unless xL > αxH.11

Discussion: Equity Premium and Labor Volatility Puzzles. The equilibrium in the la-
bor market showcases that variations in the SDF provoke variations in the LDF, that is,
they lead to labor fluctuations. This observation connects the equity premium, equity
volatility, and labor volatility puzzles. Intuitively, when investors are more willing to bear
risk, expected excess returns are low, and risk-adjusted probabilities put more weight on
high TFP growth. As a result, the firm takes greater risks by hiring more labor. As we
know from asset-pricing, from Hansen and Jagannathan (1991) and Cochrane and Hansen
(1992), not only is the volatility of the SDF relatively large, but it is associated with sub-
stantial movements in expected returns (see e.g. Cochrane (2011)). Therefore, success in
generating large employment fluctuations is tied to the success in obtaining a large and
volatile equity premium because the labor volatility and equity volatility puzzles are the
same puzzle in this setting.

10As hours and wages depend only on L, we simplify notation and write h(L) and w(L) instead of the
more general notation h(X, s) and w(X, s). Similarly, we write profits as π(L, s) instead of π(X, s).

11Given that the highest possible value for L, the last period expected TFP growth under the risk-neutral
measure, is xH , profits are positive as long as xs > αL. The condition xL > αxH guarantees this is the case.
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3.4 Markov equilibrium

In addition to L, the wealth distribution is also an endogenous state variable. We define
the share of (total) wealth of investor i ∈ I :

ηi,t ≡
µiNi,t

∑I
j=1 µjNj,t

.

ηi,t evolves according to

η′i(X, s, s′) =
ηiRi,n(X, s, s′)(1− ci(X, s))

∑I
j=1 ηjRj,n(X, s, s′)(1− cj(X, s))

. (22)

Given L and {ηi}I−1
i=1 , and the realization of TFP growth, we can characterize all aggregate

variables. We stack the endogenous state variables in X ≡
(
L, {ηi}I−1

i=1

)
and define a

Markov equilibrium in (X, s).

Definition 2 (Markov Equilibrium). A Markov equilibrium in (X, s), with a law of motion
for X given by (20) and (22), is the set of functions: price of surplus claim P(X, s), interest
rate Rb(X, s), labor hours h(L), wages w(L), wealth multiplier vi(X, s) and policy functions
(ci(X, s), ωi(X, s)), for i ∈ {1, . . . , I}, such that:

i. The value function is given by (12) and satisfies the Bellman equation (10). The
consumption-wealth ratio is given by (13) and the portfolio share is given by (17).

ii. Hours and wages satisfy (21).

iii. The goods and the risky asset markets clear:

I

∑
i=1

ηici(X, s) =
xsh(L)α − ξ

h(L)1+ν

1+ν

P(X, s)
,

I

∑
i=1

η̃i(X, s)ωi(X, s) = 1, (23)

where η̃i(X, s) ≡ ηi(1−ci(X,s))
∑I

j=1 ηj(1−cj(X,s))
.

4 Analytic Solution: Log Utility Case

In this section, we consider log utility. We show that the LDF is a function of only market
beliefs. We then derive a formula that dictates how market beliefs evolve. This analytic
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formulation renders sharp predictions about how belief heterogeneity amplifies or damp-
ens business cycles. In the subsequent section, we supplement this characterization with
a quantitative exercise.

Equilibrium Labor Demand Factor Given Market Beliefs. Under log utility, ψ = γ =

1. In this case, the consumption-wealth ratio and portfolio shares specialize to:

ci(X) = 1− β, ωi(X, s) =
1

∆Rr(X, s)

[
pi

sH
psHΛ(X, s, H)

−
pi

sL
psLΛ(X, s, L)

]
.

Combined with the market clearing conditions (23), they yield the risk-free rate and the
risk premium.

Proposition 2 (Risk-free rate and risk premium). Let ψ = γ = 1. Then,

(i) The risk-free rate is

Rb(X, s) =
(

1− α

1 + ν

)
xs

β

L′(X, s)
1+ν

1+ν−α

xsL
α

1+ν−α − α
1+νL

1+ν
1+ν−α

. (24)

Rb(X, s) is increasing in L′(X, s) and decreasing in xs.

(ii) The conditional risk premium is given by

Es[Re
r(X, s, s′)] =

1
1− α

1+ν

Es[xs′ ]−L′(X, s)
L′(X, s)

. (25)

Es[Re
r(X, s, s′)] is decreasing in L′(X, s).

Proof. See Appendix A.5.

Proposition 2 shows that the risk-free rate and the risk premium can be deduced from
the current productivity growth, xs, and the lagged and current period’s LDF, L and
L′(X, s). The risk premium and the return on safe assets move in opposite directions with
labor demand conditions: an increase of L′(X, s) leads to a decline in the risk premium,
but leads to an increase in the risk-free rate. Ceteris paribus, periods of low risk premium
are associated with a high labor demand.

Of course, the LDF L′(X, s) is endogenous and a function of market beliefs. Next, we
solve for L′(X, s) and, thus, determine asset prices. We start by translating the market
clearing conditions into a demand and supply system, where the quantity variable is the
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risk in investors’ portfolios. The demand and supply of risk are a convenient transfor-
mation of the asset-market clearing conditions (23): multiply both sides of the condition
for risky assets by σs[Rr(X, s, s′)], and use that σs[Ri,n(X, s, s′)] = ωi(X, s)σs[Rr(X, s, s′)],
to obtain:

I

∑
i=1

ηiσs[Ri,n(X, s, s′)]︸ ︷︷ ︸
demand for risk

= σs[Rr(X, s, s′)]︸ ︷︷ ︸
supply of risk

.

The left of the expression is the demand for risk. The demand for risk corresponds to the
volatility in total wealth that households are willing to accept at given asset prices. The
right-hand side represents the supply of risk. The supply of risk is the volatility of the
economy’s surplus claim. The next proposition expresses the demand and supply of risk
as a function of the LDF.

Proposition 3 (The demand and supply of risk). Suppose xL > αxH. Then,

(i) The supply of risk is

σs[Rr(X, s, s′)] =
xs

β

σs[xs′ ]L′(X, s)
α

1+ν−α

xsL
α

1+ν−α − α
1+νL

1+ν
1+ν−α

. (26)

(ii) The demand for risk is

I

∑
i=1

ηiσs[Ri,n(X, s, s′)] = σs[xs′ ]Rb(X, s)
[

pm
sH(X)

L′(X, s)− xL
− pm

sL(X)

xH −L′(X, s)

]
, (27)

where pm
ss′(X) ≡ ∑I

i=1 ηi pi
ss′ .

Proof. See Appendix A.6.

Proposition 3 implies that the supply of risk is increasing in L′(X, s), while the de-
mand for risk is decreasing inL′(X, s), as shown in Figure 1. As with any demand system,
the equilibrium L′(X, s) falls in the intersection.

Let’s delve into the supply of risk. The risk of the surplus claim increases in L′(X, s)
through an operating leverage channel.12 Recall that labor demand increases with L′(X, s).
Because labor is hired in advance, costs are fixed while revenues are risky. Thus, there is

12Operating leverage is the ratio of revenues minus contemporary variable costs (which are zero in our
setting) to profits. The relation between return risk and operating leverage originally appears in Lev (1974).
For evidence on this channel, see e.g. Novy-Marx (2010) and Donangelo et al. (2019).
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Figure 1: Equilibrium in the market for risky assets

more risk with a greater LDF, L′(X, s), as the following formula demonstrates:

σs[Rr(X, s, s′)]
Es[Rr(X, s, s′)]

=
σs[x′]

Es[xs′ ]

Es[xs′ ]L′(X, s)
α

1+ν−α

Es[xs′ ]L′(X, s)
α

1+ν−α − α
1+νL′(X, s)

1+ν
1+ν−α︸ ︷︷ ︸

operating leverage

>
σs[xs′ ]

Es[xs′ ]
. (28)

In words, the risk in the aggregate surplus is an amplified version of the underlying risk,
σs[xs′ ]
Es[xs′ ]

, where the amplification factor is the operating leverage. Through this amplifica-

tion, actual earnings are also more volatile than consumption, as in the data.13

Let’s turn to the demand for risk. The demand for risk is decreasing in L′(X, S). As
shown in Proposition 2, the risk premium is inversely related to L′(X, S), so investors are
more willing to hold risky assets when the risk premium is high. The demand for risk
is itself a function of market beliefs, a weighted average of investors’ beliefs, pm

ss′(X). As
market beliefs become more optimistic, investors are willing to hold more risky assets for
a given level of risk premium.

Propositions 2 and 3 demonstrate that, unlike models where hiring occurs after pro-
ductivity is realized, labor demand and asset prices are determined jointly. We combine
the demand and supply for risk to obtain the equilibrium LDF as a function of current
market beliefs.

13If labor were chosen after productivity is known, dividends and consumption would be equally
volatile. With preset labor, TFP shocks disproportionately impact dividends. A pattern of more volatile
dividends than consumption is consistent with the data (see e.g. Campbell 2003), but, thus, inconsistent
with models in which there is no risk in hiring.
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Corollary 1 (Labor demand factor). The risk-neutral expectation of productivity growth
L′(X, s) corresponds to the smallest real root of the quadratic equation:

α

1 + ν
L′(X, s)2−

[
pm

sH(X)

(
xL +

α

1 + ν
xH

)
+ pm

sL(X)

(
α

1 + ν
xL + xH

)]
L′(X, s)+ xLxH = 0.

Proof. See Appendix A.6.

This corollary shows that, for the log case, the LDF is independent of the current state
s and it is a function of market beliefs only. Hence, the wealth distribution affects asset
prices and labor decisions to the extent it affects market beliefs. An important implica-
tion of this result is that there is no volatility in hours with common iid beliefs. As the
productivity growth is likely close to iid under the objective measure, this result indicates
the importance of non-rational beliefs in generating business cycle fluctuations.

Figure 1 also illustrates how we can exploit this demand system representation to
explain the effects of changes in market beliefs. When market beliefs become pessimistic,
there is a decline in the demand for risk, which leads to a decrease in the equilibrium LDF
and, ultimately, a drop in hours.

From the LDF to the Evolution of Market Beliefs. Corollary 1 shows that, given mar-
ket beliefs, we can compute the LDF and asset prices. Another convenient property of
log preferences is that the law of motion of market beliefs, and wealth, has an analytic
representation:

Proposition 4 (Dynamics of wealth and market beliefs). Let ψ = γ = 1. Then,

(i) the wealth share of investor i ∈ I evolves as:

η′i(X, s, s′) = ηi
pi

ss′

pm
ss′(X)

, (29)

(ii) market beliefs are:

pm
s′H(X′) =

I

∑
i=1

ηi
pi

ss′

pm
ss′(X)

pi
s′H. (30)

Proof. See Appendix A.7.

Proposition 4 shows that the wealth of household i increases when it assigns a greater
likelihood to the realized state than what market beliefs do. Next, we present a taxonomy
of belief types. The analytic representation in Corollary 1 and Proposition 4 provides a
tool to make predictions regarding how different forms of beliefs impact business cycles.
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4.1 A Taxonomy of Beliefs and Business Cycle Predictions

We classify belief structures and show how each belief structure has different business
cycle implications. We provide the following taxonomy:

Definition 3 (Taxonomy of beliefs). Household i is optimistic (pessimistic) relative to a bench-
mark belief o at state s if pi

sH > po
sH (pi

sH > po
sH). We further classify belief structures:

(i) Beliefs are rank preserving if i is optimistic or pessimistic relative to o, ∀s.

(ii) Beliefs are rank alternating if i is optimistic relative to o in one state, but i is pessimistic
relative to o in the other state.

In this definition, the index o can represent another household’s beliefs, the market’s
beliefs, or a rational expectations benchmark. We exploit this taxonomy to show that dif-
ferent belief structures induce different amplification properties, both in terms of the am-
plitude and phase of the business cycle. First, we investigate the different predictions un-
der homogeneous non-rational beliefs. We then discuss how heterogeneous non-rational
beliefs produces internal propagation mechanism and discuss the different properties of
different belief structures.

Homogeneous beliefs. With homogeneous beliefs, we have a representative investor.
In this case, the model lacks internal propagation: the LDF only depends on the current
state, xs. Furthermore, if investors believe that productivity growth is iid, pLH(X) =

pHH(X), then the LDF and, thus, hours are constant.
Away from iid growth, beliefs may amplify or dampen cycles relative to rational ex-

pectations. Figure 2 helps illustrate this point. The figure simulates four periods of reces-
sion within a twenty period interval for five types of homogeneous belief classifications:
rational expectations (pi

ss′ = pss′ for all s, s′); two rank-preserving cases: always optimistic
(pi

sH > psH for all s) or always pessimistic (pi
sH < psH for all s); and two rank-alternating

cases: extrapolative (pi
ss′ > pss′ all s = s′) defined as optimistic during booms but pes-

simistic at busts, and intrapolative (pi
ss′ < pss′ all s = s′) defined as pessimistic at booms

but pessimistic at busts.
Among rank-preserving beliefs: if beliefs are optimistic relative to rational expec-

tations, the cycle is amplified at expansions, but dampened during recessions. Analo-
gously, recessions are amplified and expansions dampened for pessimistic beliefs. Thus,
rank-preserving beliefs have state-dependent amplification properties and, uncondition-
ally, are ambiguous about amplification. Among rank-alternating beliefs: Extrapolative
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Figure 2: Homogeneous beliefs

Note: examples of cycles (four periods of bad shocks with sixteen periods of expansions) with homogeneous beliefs: rational, al-
ways optimistic (top-left panel), always pessimistic (top-right panel), extrapolative (bottom-left panel) and intrapolative (bottom-right
panel) beliefs.

beliefs alternate, being optimistic at good states, but pessimistic at bad states. Under ex-
trapolative beliefs, the amplitude of the cycle is magnified in all states. Analoguously,
intrapolative beliefs produce the exact opposite and reduce the amplitude of the cycle in
all states. In conclusion, the only class of belief structures that amplify the cycle relative
to rational expectations in all states are extrapolative beliefs.

Next, we investigate the internal propagation induced by belief heterogeneity.

Heterogeneous beliefs. From Proposition 4, we deduce that η′i(X, s, H) > ηi if and only
if investor i is optimistic at (X, s) relative to market beliefs. We know that the wealth of
optimists increases after good shocks and decreases after bad shocks. This observation is
key to the internal propagation of the economy:

Corollary 2. If beliefs are heterogeneous, then:

• As the current state persists: the LDF increases (decreases) with time if the current state is
high (low) growth.

• Consider an initial state (X, H) and a first switch from s = H to s′ = L at some future
date. Then,
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Figure 3: Heterogeneous beliefs: optimistic vs pessimistic

Note: examples of cycles (four periods of bad shocks with sixteen periods of expansions) with heterogeneous beliefs: I = 2 investors,
always optimistic and always pessimistic. The top panel shows the wealth share of the optimistic investor, the middle panel shows
the Sharpe ratio (under objective beliefs), and the bottom panel shows log labor hours.

– If beliefs are rank-preserving, the later the date of the switch in state, the lower the
reduction in output (the longer the boom the lesser the bust).

– If beliefs are rank-alternating, the later the date of the switch in state (the longer the
boom), the lower the reduction in output (the longer the boom the greater the bust).

Proof. See Appendix A.8.

With belief heterogeneity, the economy evolves even without changes in the state. The
reason is the joint evolution of wealth and beliefs. From Proposition 4, the wealth share
of optimists increases while the economy stays in the boom phase. Thus, market beliefs
become more optimistic relative to rational expectations as optimists accumulate wealth.
This ultimately leads to an increase in the labor demand throughout the boom phase. The
converse is true during low growth phase.

The connection between the length of cycles and their amplitude (the drop in output
after a change in state) crucially hinges on whether beliefs are rank-preserving or rank-
alternating. Rank-preserving beliefs attenuate the subsequent decline in TFP growth in a
recession that follows a longer boom. The relationship between the duration of the high-
growth phase and the severity of the recession is reversed with rank-alternating beliefs.
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Figure 4: Heterogeneous beliefs: rational vs extrapolative

Note: examples of cycles (four periods of bad shocks with sixteen periods of expansions) with heterogeneous beliefs: I = 2 investors,
rational and extrapolative. The top panel shows the wealth share of the optimistic investor, the middle panel shows the Sharpe ratio
(under objective beliefs), and the bottom panel shows log labor hours.

Figure 3 aids us to explain this pattern. The figure shows simulations of business
cycles in the case of rank-preserving beliefs—the figure uses I = 2, where investor 1 is
optimistic and investor 2 is pessimistic in both states. The figure shows the evolution of
the wealth share of the optimist, the Sharpe ratio, and log hours. The lower panel shows
that the drop in hours is smaller as the economy remains longer in the high state. The
intuition is that optimists accumulate wealth during the high-growth phase. This larger
wealth implies that, even though they lose wealth, optimists arrive at the bad state with
more wealth as the boom persists longer. Since optimists are optimist at all states, when
beliefs are rank preserving, their greater wealth makes market beliefs also more optimistic
during crashes. This attenuates the increase in risk premia and the decline in hours.

Figure 4, is the analogue figure for rank-alternating beliefs, where investor 1 is rational
and investor 2 is extrapolative. The top panel shows that the wealth share of the rational
investor declines during the boom phase. This means again that extrapolative investors
are getting wealthier as the boom lasts longer. Consequently, extrapolative households
have a larger wealth share during busts, precisely when they become pessimistic. As a
result, market beliefs are also more pessimistic after the economy transition to the low
state. This amplifies the increase in risk-premia and the decline in hours.
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Frothy markets and risk build-ups. An implication of Corollary 2 is that the risk pre-
mium declines as booms last longer. To the extent that credit spreads are driven by risk
premia, the model’s prediction is also consistent with the discussions in López-Salido et
al. (2017) and Krishnamurthy and Muir (2017) that argue that economic booms are char-
acterized by "froth" market conditions driven by credit-market sentiments. Moreover, an
increase in optimism leads not only to a reduction in risk premia, but also an increase in
volatility, as shown in Figure 1. Under this interpretation, there is endogenous risk build-
up during booms. As argued by Krishnamurthy and Li (2020), the combination of risk
build-up and low spreads is challenging to generate for standard macro-finance models,
such as He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014a). This ob-
servation suggests that market beliefs may be useful to explain credit and asset-market
dynamics during boom-bust cycles.

Discussion: heterogeneity in beliefs vs. risk aversion. As discussed above, rank-
alternating beliefs amplify inherent economic fluctuations. Therefore, it is not only differ-
ences in investors’ risk appetite that matters for business cycles, but also how differences
in the propensity to take risk to react to shocks. For instance, models of heterogeneous
risk aversion are able to generate dispersion in portfolios and time variation in expected
returns, but the ranking of agents in terms of risk-taking is always the same. This prop-
erty is analogous to the case of rank-preserving beliefs shown in Figure 3. In contrast,
there is no counterpart to the rank-alternating beliefs with heterogeneous risk aversion,
as the least risk-averse agent in the boom is also the least risk-averse agent in the bust.
Thus, different forms of investor heterogeneity have different implications for business
cycle fluctuations, asset prices, and trading.

4.2 Trading volume

We now consider the implications for stock turnover, a measure of trading volume. To
compute the volume of stock trading, we need first to map the portfolio holdings in terms
of the surplus claim, ωi, into the effective number of shares on firm equity in the primitive
economy. This mapping is particularly simple in the case of linear labor disutility, ν = 0
because in this case, human wealth is zero.14 To simplify the exhibition, we adopt this
assumption for the rest of the section.

14The share of wealth invested in stocks is simply ωi, given that human wealth is equal to zero, Hi = 0,
and Re(X, s, s′) = Rr(X, s, s′) under this assumption.
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With linear labor disutility, the volume traded is

τt =
1
2

I

∑
i=1
|ωi,tηi,t −ωi,t−1ηi,t−1|.

Clearly, there is no volume without heterogeneity. With heterogeneity, the volume traded
depends on the level of disagreement. To study the effect of an increase in belief disper-
sion on volume, we consider a small deviation from homogeneous beliefs. We express
investor i’s beliefs as follows

pi
ss′ = p∗ss′ + δi

ss′ε,

where δi
sH + δi

sL = 0 and ε is a scalar that controls the degree of belief heterogeneity.
Again, for parsimony, we focus on the case where p∗ss′ =

1
2 , such that, in the absence

of heterogeneity, beliefs are iid and symmetric—the proofs in the Appendix hold for the
general common belief case.

With the parameterization of beliefs used in this section, Appendix B.2 shows that the
portfolio share of investor i is:

ωi(X, s; ε) = 1 + κω

[
pi

sH − pm
sH(X)

]
+O(ε2),

where κω is a positive constant. This expression showcases how optimistic investors, for
whom pi

sH > pm
sH(X), are levered in stocks.

Consider current and future states s and s′. The effect of a perturbation in ε on the
trades of investor i is:

∆Si(X, s, s′; ε) = ∆ηi(X, s, s′)︸ ︷︷ ︸
rebalancing effect

+ ∆ωi(X, s, s′)ηi︸ ︷︷ ︸
change-in-beliefs effect

+O(ε2), (31)

as the economy switches from state (X, s) to (X′, s′), where

∆ηi(X, s, s′) ≡ ηi
pi

ss′ − pm
ss′(X)

p∗ss′
, ∆ωi(X, s, s′) ≡ κω

[
pi

s′H − pm
s′H(X)− (pi

sH − pm
sH(X))

]
.

Expression (31) reveals two effects. The rebalancing effect captures the extent to which
investors trade after a change in the state in order to keep portfolio shares constant: in-
vestors who put more likelihood on the realized state relative to the market belief, in-
creased (decreased) their wealth share. Thus, they must buy (sell) the risky asset when
that state is realized, in order to keep the portfolio share constant. Of course, as the econ-
omy evolves from s to s′, portfolio shares themselves change as beliefs are modified. The
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change-in-beliefs effect captures the trade that follows the change in portfolio shares as the
state changes. The change-in-beliefs effect is equal to zero if s = s′, as individual beliefs
are constant in this case.

In tandem, the rebalancing and change-in-beliefs effects determine the equilibrium
turnover.

Proposition 5 (Turnover). The economy’s turnover, as it switches from state (X, s) to state
(X′, s′), is given by

τ(X, s, s′; ε) =
1
2

I

∑
i=1

ηi

∣∣∣∣∣ pi
ss′ − pm

ss′(X)

p∗ss′
+ κω

[
pi

s′H − pm
s′H(X)− (pi

sH − pm
sH(X))

]∣∣∣∣∣+O(ε2).

(32)

Proof. See Appendix A.8.

Proposition 5 provides a characterization of turnover. When s = s′, the change-in-
beliefs effect vanishes; turnover is driven solely by the rebalancing effect:

τ(X, s, s′; ε) =
1
2

I

∑
i=1

ηi
|pi

ss′ − pm
ss′(X)|

p∗ss′
+O(ε2).

Thus, when there is no change in the state of the economy, turnover is proportional to the
average absolute deviation of beliefs. The formula is consistent with the evidence in Sec-
tion 5.4, which shows that dispersion on subjective beliefs about cash flows is correlated
with stock market turnover.

The change-in-beliefs effect emerges when the economy switches states, that is, when
s 6= s′, . In general, this effect may either amplify or dampen the rebalancing effect, de-
pending on the type of belief and the direction of change in the economy. For instance,
suppose that s = H and s′ = L and that investors have rank-alternating beliefs. Opti-
mistic investors lose wealth as the economy switches to a bad state. The rebalancing effect
implies that they need to sell some of the risky assets to maintain their portfolio shares
once stocks lose value. These investors also become pessimists in downturns, so this leads
them to sell even more stocks. Thus, the two effects go in the same direction, amplifying
the impact on the turnover when the economy switches from high to low states. The two
effects go in opposite directions when s = L and s′ = H. Pessimists become optimistic
as the economy switches to the good state, which induces them to increase their port-
folio share in stocks while the rebalancing effect dictates them to sell stocks once stocks
appreciate in order to keep the portfolio balanced.
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Connecting with the Turnover Evidence. It is convenient to express heterogeneity in
beliefs, pi

ss, in terms of heterogeneity in the perceived persistence of fundamentals. As-
suming investors agree on the unconditional mean of xt, x, we can write Ei,t[xt+1]− x =

θi(xt − x), where θi is a function of pi
ss′ . The following corollary shows heterogeneous

beliefs lead to larger turnover rates as the economy from booms to recessions.

Corollary 3. Suppose investors agree on the unconditional mean of xt, i.e. pi
LH/pi

HL = pH/pL

and that the following condition is satisfied: p∗ss′ = pH = 1
2 . Turnover as the economy switches

from s to s′ is given by

τ(X, H, L; ε) =
ζ(s, s′)

2

I

∑
i=1

ηi|θi − θ(X)|+O(ε2), (33)

where

ζ(s, s′) ≡


κω + 1, if s = H and s’ = L
|κω − 1|, if s = L and s’ = H

1, if s = s’

The key message from Corollary 3 is that turnover increases in belief dispersion and,
furthermore, that the effect is more pronounced during busts. Both predictions are in
line with the evidence discussed in Section 5.4. The assumption of rank-alternating be-
liefs is important to obtain this asymmetric effect. If investors have rank-preserving be-
liefs, where they are equally optimistic or pessimistic in both states, so δ̃i

s′H = δ̃i
sH even

for s′ 6= s, then the change-in-beliefs effect will be equal to zero and we would not ob-
tain a stronger response of turnover to disagreement during bad times. Therefore, rank-
alternating beliefs are key to capturing the dynamics of stock market turnover.

5 Quantitative analysis

We now consider the quantitative implications. We extend the baseline model from Sec-
tion 2 along two dimensions. First, productivity growth xt now takes values on an ar-
bitrary number of states. This extension is necessary to capture the empirical properties
of earnings growth in the data. Second, we introduce mortality risk, to induce a non-
degenerate stationary wealth distribution which is necessary to capture the effect of het-
erogeneous beliefs on unconditional moments.
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5.1 The model with an arbitrary number of states

We start by specifying a continuous Markov process for xt, under both objective and sub-
jective beliefs, and then adopt a discrete approximation. Let x̂t ≡ log xt−E[log xt] denote
demeaned log aggregate productivity. We assume that, under the objective measure, x̂t

follows the process:
x̂t+1 = σuut+1 + wt+1, (34)

where ut is i.i.d., ut+1|wt+1 ∼ N (0, 1), wt+1 is Nw-state Markov chain with transition
probability Pr(wt+1 = wj|wt = wi) = pw

ij , and E[wt+1] = 0. Therefore, productivity
is subject to Gaussian and non-Gaussian shocks needed to produce a fat-tailed earnings
distribution. We focus on the case where x̂t is iid, so pw

ij = pw
kj, for i 6= k.

We allow beliefs to deviate from the process (34), and potentially over- or under-react
to past information. Moreover, we also allow for sentiment shocks. We use the following
specification for the subjective beliefs about x̂t:

x̂t+1 = Ei,t[x̂t+1] + σi,uui,t+1 + wt+1 (35)

Ei,t[x̂t+1] = θi x̂t + σvvt, (36)

where vt ∼ N (0, 1) and vt is independent of both ui,t and wt.
In two important ways, investors’ beliefs deviate from the objective process for x̂t+1.

First, investors disagree about the persistence of states. Some investors believe that pos-
itive shocks persist, θi > 0, while others believe that shocks revert, θi < 0. Second,
beliefs are subject to a common sentiment shock, vt. We impose that the unconditional
variance of x̂t under subjective beliefs coincides with the actual unconditional variance,
Vari[x̂t] = σ2

x . Relative to the objective measure, sentiment shocks cause a larger fraction
of the variation of x̂ to be attributed to movements in expectations. Sentiment shocks
allow us to reproduce the observed volatility of expectations in the data. We further as-
sume that investors agree on the transition probabilities of wt+1 and observe its current
value. Thus, investors understand that earnings have fat tail. Hence, the only source of
disagreement is the persistence of shocks θi.

Appendix O2.6 discusses the discretization of the process for x̂t. The discretization
provides a state space with dimension S for xt, so xt ∈ X = {x1, x2, . . . , xS}, and transition
probabilities {pi

ss′}, for s, s′ ∈ S = {1, 2, . . . , S}. Our discretization implies that the grid X
is the same for all investors, so they agree on the state s, but they disagree on the transition
probabilities pi

ss′ .
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Mortality risk. We now assume that investors die with probability κ. When an investor
dies, she leaves her net worth to her offspring, which will be of type i ∈ I with probability
µi, the mass of type-i investors in the population. Investors derive no utility from their
bequests. Hence, as in Blanchard (1985), the discount factor β reflects both impatience
and the probability of death.

Mortality risk alters the law of motion of the wealth share ηi

η′i(X, s, s′) = (1− κ)
ηiRi,n(X, s, s′)(1− ci(X, s))

∑I
j=1 ηjRj,n(X, s, s′)(1− cj(X, s))

+ κµi.

As in Gârleanu and Panageas (2015), κ > 0 ensures that no investor type concentrates all
the wealth asymptotically.

Model solution. We describe the model characterization with an arbitrary number of
states, mortality risk, and general Epstein-Zin preferences in Appendix O1. Previous
results are essentially unchanged.15

As in the binary case, an exact closed-form solution is unavailable away from the
log case. The approximations used e.g. by Bansal and Yaron (2004) and Hansen et al.
(2008), who considered economies with Epstein-Zin investors and time-varying expected
growth rates, are not suitable for an economy with heterogeneity and non-Gaussian
shocks. Therefore, we develop an alternative perturbation method that allows us to de-
rive asymptotic closed-form expressions, described in detail in Appendix O1. An ad-
vantage of this method is that it is possible to compute the model solution even with a
relatively large number of agents, which will be important to capture the heterogeneity
of beliefs in the data.

5.2 Calibration

We use the following calibration, where parameter are expressed in quarterly terms. Pref-
erences: We set β = 0.99, risk aversion γ = 10.0, and EIS ψ = 2.0, typical values in the
literature. We choose the labor disutility parameter ξ to normalize the average hours to 1
and ν = 2, which gives a Frisch elasticity of 0.5, in line with the micro estimates of Chetty
et al. (2013). We set κ = 0.02, following Gârleanu and Panageas (2015). Technology: We
set α = 0.66 and choose E[log x] and σu to match the average and standard deviation
of annual consumption growth of 2% and 3.3%, respectively, consistent with Campbell
and Cochrane (1999). The non-Gaussian states are two, Nw = 2, corresponding to normal

15For instance, Lemma 1 and Proposition 1 hold exactly, with s, s′ ∈ {1, . . . , S}.
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times and crisis periods. We estimate the magnitude of the shock conditional on a crisis
as follows. Using the time series for earnings and dividend growth in Robert Shiller’s
database, we compute the standard deviation of each series, Winsorized at 2.5% for each
tail to capture the volatility in normal times. We then compute the average decline in
growth for each series conditional on being in the left tail, i.e below the 2.5%-percentile.
We find a drop in earnings growth of 4.9 standard deviations and a drop in dividend
growth of 3.5 standard deviations. We set the drop in productivity to be 4.2 standard
deviations in the crisis state, the average of these two numbers, and the probability of the
crisis state to 2.5%.

Heterogeneity in investors’ beliefs. The novelty of the paper is the estimation of the
beliefs regarding the persistence of type-i investors, θi, the mass of type-i investors in the
economy, µi, and their distribution, and the volatility of belief shocks σv.

To estimate these parameters, we exploit survey data on beliefs about earnings expec-
tations. A key challenge is that the survey data regard individual firm expectations, so
we infer the heterogeneity in beliefs about aggregate earnings from the cross-section.

We employ data from I/B/E/S on analysts’ expectations about firms’ future earnings.
The I/B/E/S dataset presents quarterly analyst forecasts on earnings per share for several
publicly traded firms. For each company, we may find one or more forecasts at different
horizons.

We build firm-level series for the expected standardized earnings growth, Eei
t. We build

these series through the following steps:

i. We compute total expected yearly earnings, by first multiplying EPS quarterly fore-
casts by the number of common outstanding shares. We then sum forecasts for the
next 4 quarters to obtain the forecasted earnings over the next 12 months, following
Gennaioli et al. (2016).

ii. We compute the difference between expected earnings in the next 4 quarters and
realized earnings over the past 4 quarters.

iii. The difference in earnings depends on the size of the firm, hence we must standard-
ize differences. Because some firms report negative realized earnings, we do not use
earnings in the denominator to compute growth rates.16 Instead, we standardize the
change in earnings by the standard deviation of the firm’s realized earnings during
the sample.

16Gennaioli et al. (2016) exclude firms with negative earnings realizations. We chose a different stan-
dardization to avoid dropping observations with negative earnings.
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We employ an econometric framework to estimate the parameters that govern beliefs
as follows.

The econometric analysis is as follows. Let i ∈ I denote a firm-analyst observation in
the I/B/E/S data—we index firm-level outcomes also by i. We denote (realized) earnings
for i at period t by ei,t and its first-difference by ∆ei,t = ei,t − ei,t−1.17 In turn, we denote
aggregate earnings by et and the first-difference of aggregate earnings by ∆et. We specify
a process for the realized earnings of i in terms of exposure to the aggregate earnings:

∆ei,t = βi∆et + ui,t, (37)

where ui,t = ρiui,t−1 + εi,t and εi,t ∼ N (0, σ2
ε ). The error term εi,t is i.i.d. and independent

of ∆et.18 Idiosyncratic shocks are captured by ui,t. In turn, ρi controls the persistence
of idiosyncratic shocks. Hence, we assume that all firms are heterogeneous regarding
their exposure to the aggregate earnings shock and the persistence of their idiosyncratic
shocks.

To exploit the cross-section of the data, we focus on disagreement regarding the per-
sistence of the shocks to aggregate earnings. For that, we assume that analysts agree that
their stocks’ earnings are exposed to the aggregate factor following (171) but disagree on
the process for aggregated earnings. In particular, we assume that analyst i believes (in a
dogmatic fashion) that ∆et follows:

∆et = θi∆et−1 + νi,t, (38)

where νi,t is an i.i.d. process given by νi,t ∼ N (0, σ2
ν ). Analysts agree on the unconditional

mean for ∆et, which we normalized to zero and ∆et is perfectly observed. Thus, the
expected change in aggregate earnings of analyst i is given by

Ei,t[∆et+1] = θi∆et, (39)

where Ei,t[·] denotes the conditional expectation at t of i. Hence, differences in beliefs are
exclusively captured by differences regarding θi, the mean-reversion of aggregate earn-
ings. For example, the formulation can capture belief extrapolation: a high value for θi

implies that i is more optimistic about aggregate earnings after a positive shock and more

17As ei,t can potentially be negative, we work with first differences instead of proportional differences,
∆ei,t
ei,t

, or log-differences, ∆ log(ei,t). By focusing on the first differences, we do not have to drop firms that
experience negative earnings, which is a significant fraction of our sample.

18For the exposition, we assume that ∆ei,t and ∆et have already been de-meaned, so we can omit the
intercept, and that ∆ei,t and ∆et have been normalized to have unit variance.
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pessimistic after a negative shock that an agent with a lower θj.
Expectations of changes in individual earnings depend on θi:

Ei,t[∆ei,t+1] = βiθi∆et + ρiui,t. (40)

Equation (174) shows that we can infer properties of the unobserved process for subjective
beliefs on aggregate earnings using the information on observed subjective beliefs about
individual earnings.

We estimate {βi, ρi, θi}I
i=1 using a multi-level Bayesian model. We describe the estima-

tion procedure in detail in Appendix C.19

5.3 Quantitative Results: unconditional moments

We first study the model’s ability to match unconditional moments. To isolate the role of
each model ingredient, we start from a stripped-down version of the model and progres-
sively add features until we reach the complete model. Table 1 presents the results.

The stripped-down version features a single representative rational investor and only
Gaussian shocks. The first column shows the endowment economy limit. The economy be-
haves as an Epstein-Zin version of Mehra and Prescott (1985).20 In this case, the volatility
of consumption and dividends coincide, and the price-dividend ratio is constant. Col-
umn 2 introduces the hiring timing. Relative to the endowment economy limit, the sur-
plus is more volatile than consumption and dividends are more volatile than the surplus.
Quantitatively, the model matches the targeted volatility of consumption and delivers the
volatility of dividends observed in the data which is not a target. However, iid beliefs do
not produce excess stock volatility or variation in hours.

Column 3 adds the non-Gaussian shocks. In line with the literature on rare disasters,
this raises the equity premium but does not add volatility.

Columns 4 and 5 consider the role of the non-rational homogeneous beliefs measured in
the data. Column 4 assumes that investors have a common persistence parameter, θi = θ,
set to the unconditional mean, but it abstracts from sentiment shocks, σv = 0. Relative
to the case of rational beliefs, the model is now able to generate some volatility of hours.
The sentiment shock adds substantial volatility to hours and equity returns.

Column 6 shows the results for the model with heterogeneous beliefs. This is key to

19The procedure is analogous to a ridge regression, where the estimates are regularized using an L2
penalty (see e.g. Hastie et al., 2009).

20We obtain this limit by making α and ξ go to zero, while α/ξ converges to a positive number. In this
case, hours equal a positive constant, but both wages and labor disutility are equal to zero.
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Rational Beliefs Homogeneous Beliefs Het. Beliefs
(1) (2) (3) (4) (5) (6)

Variables Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Interest rate 2.22 0.00 2.04 0.52 1.37 0.58 1.09 0.25 0.96 1.43 0.83 1.42

Excess Returns (surplus) 1.54 4.70 1.78 6.34 3.29 7.07 3.70 7.19 4.66 6.85 4.87 6.91

Excess Returns (equity) 1.55 4.70 1.79 6.35 3.31 7.08 3.80 8.61 4.71 10.80 5.01 11.43

Consumption growth 2.00 3.13 1.99 3.14 2.16 3.50 2.17 3.51 2.69 3.16 2.69 3.15

Surplus growth 2.00 3.13 1.99 4.36 2.24 4.85 2.24 4.86 2.70 4.37 2.69 4.37

Dividend growth 2.00 3.13 1.99 5.68 2.27 6.37 2.28 6.37 2.71 5.70 2.69 5.70

Log hours 0.00 0.00 -0.01 0.00 -0.51 0.00 -0.69 0.58 -0.72 2.16 -0.84 2.26

Table 1: Unconditional moments

deliver the turnover and leverage moments.
The model with all the features generates substantial labor market fluctuations, with

a sizeable equity premium and equity volatility. Success in matching labor market out-
comes is tightly connected to the improvement in asset-pricing moments. The excess
volatility in stocks relative to the cash-flow volatility is a result of movements in beliefs.
These, ultimately affect expected returns and hiring decisions.

5.4 Assessment of the Mechanism

In this section, we offer an assessment of the model’s mechanism by investigating other
data patterns. First, we show that periods with greater belief disagreement coincide with
greater stock market turnover. Second, we present some suggestive evidence that in-
vestor expectations predict firm-level employment decisions. Finally, we discuss the per-
formance in terms of asset-price predictability.

Belief heterogeneity and stock market turnover. A salient feature of models with het-
erogeneous beliefs is their predictions regarding stock-market turnover. In this section,
we use our estimates to construct a time series of belief disagreements and present its
correlation with a measure of stock turnover.

Recall that the expectation of analyst of aggregate earnings growth is given by
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Ei[∆et+1] = θi∆et. We use the following disagreement index DIt,:

DIt = σ[θi]× |∆et|︸ ︷︷ ︸
σ[Ei[∆et+1]]

. (41)

The disagreement index (DI) has two components: First, the cross-sectional dispersion
in θi. Second, the absolute value of current aggregate earnings growth, |∆et|. If all ana-
lysts were to agree on the persistence of aggregate earnings growth, such that σ[θi] = 0,
then the DI would equal zero. In turn, given that ∆et has already been demeaned, |∆et|
captures the distance of aggregate earnings growth to the mean. Also, there is no dis-
agreement if aggregate earnings growth is at its average value, |∆et| = 0. Thus, the DI
increases with the deviations from the mean of aggregate earnings and more so with the
underlying disagreement about the reversal speed.

The left panel of Figure 7 shows the time series of DI. Disagreement is low during
expansions, but spikes in recessions, the periods where earnings growth deviates most
from the mean.

We relate the value-weighted stock-market turnover with the DI.21 The right panel of
Figure 7 shows that turnover increased significantly over time. Moreover, it shows an
important countercyclical behavior.

Table 5 shows the result of a time-series regression of turnover against the DI. In line
with the visual inspection of Figure 7, the disagreement DI features outliers during re-
cessions. We thus exclude observations where the DI is below the 2.5% percentile or
above the 97.5% percentile. Column (1) shows a strong statistically significant correlation
between DI and turnover. If the disagreement index increases from the 25% percentile
value to its 75% percentile value, turnover increases by almost 30%. Column (2) shows
that turnover responds particularly strongly to the DI during downturns. We add an
interaction of the DI with a dummy for NBER recessions and find that the coefficient is
positive and statistically significant; its magnitude is economically large, and the response
of turnover to the DI is 70% larger in recessions. Column (3) tests for a nonlinear relation-
ship: we introduce a quadratic term, again excluding outliers. The quadratic term is non
significant. Column (4) performs the same non-linear regression but includes outliers.
In this case, the quadratic term becomes statistically significant, again indicating that the
outliers also capture increased disagreement during downturns.

21We measure the stock turnover - shares traded divided by shares outstanding—for individual securi-
ties on the New York and American Stock Exchanges from January 1977 to December 2021. We measure
turnover at the quarterly frequency and compute an aggregate turnover measure using a value-weighted
average (similar results are obtained by using an equal-weight measure).
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Figure 5: Time series of the disagreement index and stock market turnover
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Note: Left panel shows the time series of the disagreement index and the right panel shows the time series of stock market turnover.
The smooth line in the right panel is the HP-filter trend of turnover. The vertical bars represent NBER recessions.

In conclusion, the DI is strongly correlated with turnover, but more so in crises. Recall
that above we show that extrapolative beliefs are consistent with this prediction.

Investor beliefs and firm employment decisions. In this section, we study if beliefs
forecast firm-level labor decisions. We consider two measures of labor variables taken
from Compustat Annual c©: the realized growth in staff expenses (payroll) and the growth
in the number of employees (workers).

We standardize measures of employment growth using the same method we use to
standardize earnings. A key empirical link for the mechanism in the paper is to argue
that investor expectations impact firm-level decisions, beyond lagged return.

The regression analysis is similar in spirit to the regression analysis in Gennaioli et al.
(2016), which finds a positive correlation between firm-level capital investment and earn-
ings expectations. Here, we regress the measures of realized employment growth against
our firm-level data on earnings growth expectations. Following Gennaioli et al. (2016),
we control for the firm’s past 12-month stock returns and contemporaneous returns to
control for information. We cluster standard errors at the firm level.

Table 3 reports that the earnings growth expectations predict the realized growth in
the two employment measures, total wages, and the number of workers.

Asset-Price Predictability. (Campbell and Shiller, 1988), offer the following decompo-
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Table 2: Regression of turnover on disagreement index

Dependent Variable: turnover
Model: (1) (2) (3) (4)

Variables
(Intercept) 0.258∗∗∗ 0.262∗∗∗ 0.242∗∗∗ 0.255∗∗∗

(0.034) (0.042) (0.044) (0.037)
DI 1.239∗∗∗ 1.066∗∗ 1.798∗∗ 1.260∗∗∗

(0.228) (0.628) (0.628) (0.290)
DI× recession 0.742∗∗

(0.253)
DI2 -2.068 -0.688∗∗

(1.692) (0.209)

Fit statistics
Observations 165 165 165 175
R2 0.24084 0.26430 0.24786 0.30386
Adjusted R2 0.23618 0.25522 0.23857 0.29576

Newey-West standard-errors in parentheses (4 lags)
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Columns (1) and (2) .

sition of the price dividend ratio:

pdt = κ +
∞

∑
τ=0

ρτEm
t [gt+τ − rt+τ], (42)

where pdt stands for the log price dividend ratio, gt the growth of dividends and rt+τ a
subjective discount factor. Critically, Em

t is the expectation of the representative market
participant. This decomposition is key to understanding the role of heterogeneous beliefs.

Because market expectations Em
t are unobservable, we approximate expectations

Es
t [gt+τ] where Es

t is a statistical expectation constructed from econometric models. A
challenge put forth by Cochrane (2008) is that since aggregate dividends are difficult to
forecast with price dividend ratios, the bulk of the movement in stock values must be
attributed to changes in discounting. At face value, this conclusion would seem to leave
little room for earnings beliefs driving asset prices. However, using Es

t to proxy for Em
t ,

assumes rational expectations.
Rather than assuming rational expectations, recent work has focused on approximat-

ing Em
t directly from data on expectations surveys, Ei

t. However, a concern regarding this
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Table 3: I/B/E/S Expectations and Labor

Dependent Variable: Payroll Number of workers
Model: (1) (2) (3) (4) (5) (6)

(Intercept) 0.388 0.274 0.364 0.392 0.143 0.170
(0.247) (0.223) (0.241) (0.097) (0.195) (0.052)

lag Ei[gt] 0.133*** 0.135*** 0.136*** 0.061*** 0.062*** 0.067***
(0.043) (0.043) (0.043) (0.014) (0.014) (0.014)

lag 12-month return 0.474*** 0.535***
(0.119) (0.054)

12-month return 0.234* 0.326***
(0.125) (0.043)

Fit statistics
Observations 1797 1797 1797 1797 1797 1797
R2 0.081 0.090 0.083 0.081 0.090 0.083
Adjusted R2 0.038 0.046 0.039 0.038 0.046 0.039

Newey-West standard-errors in parentheses (4 lags)
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

approach is that surveys may not represent the beliefs of average investors.
We can recast the Campbell-Shiller decomposition in terms of Es

t , Ei
t and Em

t to de-
compose beliefs into deviations from rational expectations and the representativeness of
survey data.

pdt = κ +

survey quality︷ ︸︸ ︷
∞

∑
τ=0

ρτ
[
Em

t [gt+τ]−Ei
t[gt+τ]

]
+

survey forecast︷ ︸︸ ︷
∞

∑
τ=0

ρτ
[
Ei

t[gt+τ]−Es
t [gt+τ]

]
(43)

+

rational expectations︷ ︸︸ ︷
∞

∑
τ=0

ρτ [Es
t [gt+τ]−Em

t [rt+τ]], (44)

Under rational expectations, Em
t = Es

t , in which case beliefs do not impact substantially
asset prices. If beliefs are irrational, Em

t 6= Es
t , leaving room for a substantial contribution

of beliefs in the volatility of asset prices. In particular, this contribution will be captured
by forecast errors.

We can use our model to construct counterfactual survey responses and deviations
from rational expectations. Within our model, we find that earnings expectations can
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explain a large part of the fluctuations in the PE ratio, but not as if we take survey data as
the measure of beliefs.

6 Conclusion

When asked about the nature of business cycles, Thomas Sargent22, a pioneer of rational
expectations, answered:23

“[...] economists have been working hard to refine rational expectations the-
ory. [...] An influential example of such work is the 1978 QJE paper by Har-
rison and Kreps. [...], for policymakers to know whether and how they can
moderate bubbles, we need to have well-confirmed quantitative versions of
such models up and running."

This response embraces the idea that “belief heterogeneity" matters but also calls for
quantitative models that link beliefs with the real economy.

This paper responds to that call an adapts a standard real business cycle model to
fit the narrative that waves of optimism and pessimism drive the business cycle. We
spell out some key ingredients that are sufficient to account for that narrative. Namely,
we argue that a combination of heterogeneity in beliefs, with substantial extrapolation,
coupled with the assumption that labor is programmed before firms can observe shocks
is needed to reproduce the data patterns.

With respect to the qualitative amplification of the business cycle, a few conclusions
are worth emphasizing. First, as diagnostic investors accumulate wealth during booms
and recessions, real business cycles are amplified. Second, the longer the boom period,
the more severe the bust. Thirdly, the model is consistent with the countercyclical nature
of turnover. We foresee that our framework can be extended to study the interaction with
other forms of amplification, such as sticky prices or fire-sales externalities.

22Interestingly, Hyman Minsky was Thomas Sargent’s undergraduate advisor. Whereas Sargent departs
methodologically and calls for a quantitative approach to economic research, there is an agreement in the
nature of business cycles.

23Interview with Thomas Sargent, The Region, August 26, 2010. Available at
https://www.minneapolisfed.org/article/2010/interview-with-thomas-sargent.
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A Proofs

A.1 Derivation of the investor’s modified problem

Proof. First, we adopt a change of variables and write the investor’s problem as follows

Vi,t = max
{C̃i,t,hi,t,Bi,t,Si,t}

(1− β)U
(
C̃i,t
)
+ βU

(
Ψ−1

(
Ei,t

[
Ψ
(

U−1(Vi,t+1

)]))
, (45)

subject to

C̃i,t + QtSi,t + Bi,t = Re,tQt−1Si,t−1 + Rb,tBi,t−1 + Wthi,t − ξt
h1+ν

i,t

1 + ν
, (46)

and the natural borrowing

(Qt + πt)Si,t−1 + Rb,tBi,t−1 + Wthi,t − ξt
h1+ν

i,t

1 + ν
≥ −Hi,t (47)

It is immediate that the optimal value of hi,t satisfies

Wt = ξthν
i,t. (48)

We show next that, given hi,t satisfying (48), if the sequence (C̃i,t, Bi,t, Si,t) satisfies (46)
and (47), then there exists (Ni,t, ωi,t) such that (C̃i,t, Ni,t, ωi,t) satisfies (11) and Ni,t ≥ 0.
Conversely, if (C̃i,t, Ni,t, ωi,t) satisfies (11) and Ni,t ≥ 0, there exists (Bi,t, Si,t) such that
(C̃i,t, Bi,t, Si,t) satisfies (46) and (47).

From the definition of the return on human wealth, we have that Wthi,t − ξt
h1+ν

i,t
1+ν =

Rh,t−1Hi,t−1 −Hi,t, which allow us to write (46) and (47) as follows:

C̃i,t + QtSi,t + Bi,t +Hi,t = Ni,t, Ni,t ≥ 0. (49)

We consider next the law of motion of total wealth:

Ni,t+1 =

[
Re,t+1

QtSi,t

QtSi,t + Bi,t +Hi,t
+ Rb,t+1

Bi,t

QtSi,t + Bi,t +Hi,t
+ Rhi ,t+1

Hi,t

QtSi,t + Bi,t +Hi,t

] (
Ni,t − C̃i,t

)
.

(50)

As markets are dynamically complete, there exists replicating portfolios (ωhi,t, ωe,t)

such that
Rk,t+1 = ωk,tRr,t+1 + (1−ωk,t)Rb,t+1, (51)
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for k ∈ {hi, e}.
Combining the previous two conditions, we obtain

Ni,t+1 =

[
Rr,t+1

ωe,tQtSi,t + ωhi,tHi,t

Ni,t − C̃i,t
+ Rb,t+1

Bi,t + (1−ωe,t)QtSi,t + (1−ωhi,t)Hi,t

Ni,t − C̃i,t

] (
Ni,t − C̃i,t

)
.

(52)

Using the first condition in (49) to solve for Bi,t, we obtain

Ni,t+1 = [(Rr,t+1 − Rb,t+1)ωi,t + Rb,t+1]
(

Ni,t − C̃i,t
)

, (53)

where ωi,t ≡
ωe,tQtSi,t+ωhi ,t

Hi,t

Ni,t−C̃i,t
.

A.2 Proof of Lemma 1

Proof. First, we verify that the value function takes the form (12). Given the conjecture
about the value function, the Bellman equation for investor i can be written as

(vi(X, s)N)1−ψ−1 − 1
1− ψ−1 = max

c̃i,ωi
(1− β)

(c̃iN)1−ψ−1 − 1
1− ψ−1 + β

Ei
[
(vi(X′, s′)N′)1−γ

] 1−ψ−1
1−γ − 1

1− ψ−1 ,

(54)
subject to N′ = Ri,n(X, s, s′)(1− c̃i)N and N′ ≥ 0.

The first-order conditions for the consumption-wealth ratio and the portfolio share are
given by

(1− β)c̃−ψ−1

i = βRi(X, s)1−ψ−1
(1− c̃i)

−ψ−1
(55)

0 = Ei
[
(vi(X′, s′)Ri,n(X, s, s′))−γvi(X′)(Rr(X, s, s′)− Rb(X, s))

]
(56)

whereRi(X, s) = Ei
[
(vi(X′, s′)Ri,n(X, s, s′))1−γ|X, s

] 1
1−γ .

GivenRi(X, s), we can solve for the consumption-wealth ratio:

c̃i(X, s) =
(β−1 − 1)ψRi(X, s)1−ψ

1 + (β−1 − 1)ψRi(X, s)1−ψ
. (57)

The envelope condition with respect to N is given by

vi(X)1−1/ψ = βRi(X)1−1/ψ(1− c̃i(X))−1/ψ ⇒ c̃i(X) = (1− β)ψvi(X)1−ψ. (58)
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From the optimality condition for the risky asset, we obtain

Ei

[
(vi(X′, s′)Ri,n(X, s, s′))1−γ

]
= Ei

[
vi(X′, s′)1−γRi,n(X, s, s′)−γRj(X, s, s′)

]
, (59)

for j ∈ {r, b}.
Raising the envelope condition (58) to the power θ ≡ 1−γ

1−ψ−1 , using the definition of
Ri(X) and condition (59), we obtain

1 = Ei

[
βθ

(
vi(X′, s′)
vi(X, s′)

)1−γ

Ri,n(X, s, s′)−γRj(X, s, s′)(1− c̃i(X, s))−θ/ψ

]
. (60)

Using the condition vi(X) = (1− β)
1

1−ψ−1 c̃i(X)
− ψ−1

1−ψ−1 , we obtain the Euler equations

1 = Ei

[
βθ

(
c̃i(X′, s′)N′

c̃i(X, s)N

)− θ
ψ

Ri,n(X, s, s′)−(1−θ)Rj(X, s, s′)

]
. (61)

This concludes the derivation of the consumption-wealth ratio and the Euler equa-
tions for the two assets. It remains to check that the value function takes the form (12),
which amounts to show that vi(X) indeed does not depend on N. Notice that c̃i(X, s) and
ωi(X, s) do not depend on N. We can then write the Bellman equation as follows:

vi(X, s)1−ψ−1
= (1− β)c̃i(X, s)1−ψ−1

+ βEi

[
(vi(X′, s′)Ri,n(X, s, s′)(1− c̃i(X)))1−γ

] 1−ψ−1
1−γ ,

(62)
for ψ 6= 1 and

log vi(X, s) = (1− β) log c̃i(X, s) + β log Ei

[
(vi(X′, s′)Ri,n(X, s, s′)(1− c̃i(X, s)))1−γ

] 1
1−γ .
(63)

which is independent of N, which confirms our conjecture for the value function (12).

A.3 Proof of Lemma 2

Proof. The optimal portfolio share satisfies the condition

pi
sL

pi
sH

vi(χ(X, s, L), L)1−γ

vi(χ(X, s, H), H)1−γ

(
ωi(X, s)Re

r(X, s, L) + 1
ωi(X, s)Re

r(X, s, H) + 1

)−γ |Re
r(X, s, L)|

Re
r(X, s, H)

= 1 (64)
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Raising both sides to − 1
γ , we obtain

(
pi

sL

pi
sH

)− 1
γ vi(χ(X, s, L), L)1− 1

γ

vi(χ(X, s, H), H)1− 1
γ

ωi(X, s)Re
r(X, s, L) + 1

ωi(X, s)Re
r(X, s, H) + 1

|Re
r(X, s, L)|−

1
γ

Re
r(X, s, H)−

1
γ

= 1 (65)

Rearranging the expression above, we obtain

ωi(X, s) =
p̃i(X, s, H)

|Re
r(X, s, L)| −

p̃i(X, s, L)
Re

r(X, s, H)
, (66)

where

p̃i(X, s, s′) =
(pi

ss′)
1
γ [vi(χ(X, s, s′), s′)|Re

r(X, s, s′)|]
1
γ−1

∑s′∈{L,H}(pi
ss′)

1
γ [vi(χ(X, s, s′), s′)|Re

r(X, s, s′)|]
1
γ−1

. (67)

The SDF in this economy is given by

Λ(X, s, s′) =
1

pss′

1
Rb(X, s)

|Rr(X, s,−s′)− Rb(X, s)|
∆Rr(X, s)

, (68)

where ∆Rr(X, s) = Rr(X, s, H)− Rr(X, s, L).
We can then write ωi(X, s) as follows

ωi(X, s) =
1

∆Rr(X, s)

[
p̃i(X, s, H)

ps,HΛ(X, s, H)
− p̃i(X, s, L)

ps,LΛ(X, s, L)

]
. (69)

Diffusion-like approximation. To better interpret the expression for the portfolio share,
it is useful to consider an approximation analogous to the continuous-time limit for diffu-
sion processes. Given Rr(X, s, s′), probabilities pi

ss′ for household i, and a small parameter
ε > 0, we can find µi,r(X, s) and σi,r(X, s) that satisfies the conditions

Re
r(X, s, H) = µi,r(X, s)ε +

√
psL

psH
σi,r(X, s)

√
ε, Re

r(X, s, L) = µi,r(X, s)ε−
√

psH

psL
σi,r(X, s)

√
ε,

(70)

which gives us the expected value and variance for household i:

Ei[Re
r(X, s, s′)|X, s] = µi,r(X, s)ε, Vari[Re

r(X, s, s′)|X, s] = σ2
i,r(X, s)ε. (71)

Similarly, we can write Rb(X, s) = 1 + rb(X, s)ε.
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From Equation (129), and assuming γ = 1, we obtain

ωi(X, s) = Rb(X, s)
pi

s,HRe
r(X, s, H) + pi

s,LRe
r(X, s, L)

|Re
r(X, s, L)|Re

r(X, s, H)

= (1 + rb(X, s)ε)
µi,r(X, s)ε(√

psH
psL

σi,r(X, s)
√

ε− µi,r(X, s)ε
) (

µi,r(X, s)ε +
√

psL
psH

σi,r(X, s)
√

ε
) ,

(72)

where we used the fact that Re
r(X, s, L) < 0 by no-arbitrage.

In general, (µi,r(X, s), σi,r(X, s)) and pi
ss′ are functions of ε. Assuming that µi,r(X, s) =

O(1), σi,r(X, s)) = O(1), and pi
ss′ = O(1), we can write the expression ωi(X, s) as fol-

lows:24

ωi(X, s) =
µi,r(X, s)
σ2

i,r(X, s)
+O(ε). (73)

A.4 Proof of Proposition 1

Proof. First, we compute the Sharpe ratio on the risky asset. We will compute expectations
using the objective measure, but a similar calculation gives the Sharpe ratio using the
investors’ subjective beliefs. The expected excess return is given by

E
[
Re

r(X, s, s′)
]
= psLRe

r(X, s, L) + psHRe
r(X, s, H). (74)

The variance of excess returns is given by

Var[Re
r(X, s, s′)] = psL psH∆Re

r(X, s)2. (75)

The Sharpe ratio in the risky asset is then given by

E[Re
r(X, s, s′)]√

Var[Re
r(X, s, s′)]

=

√
psL

psH

Re
r(X, s, L)

∆Re
r(X, s)

+

√
psH

psL

Re
r(X, s, H)

∆Re
r(X, s)

. (76)

We can write the expression above in terms of the economy’s SDF. The SDF under the

24These assumptions are analogous to the ones used by e.g. Merton (1992) to derive the continuous-
time limit with diffusion processes. Allowing for rare events, pi

ss′ = O(ε) for some s′, would lead to a
jump-diffusion process.
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objective measure can be written as

Λ(X, s, L) =
E[Λ(X, s, s′)]

psL

Re
r(X, s, H)

∆Re
r(X, s)

, Λ(X, s, H) = −E[Λ(X, s, s′)]
psH

Re
r(X, s, L)

∆Re
r(X, s)

.

(77)

Combining the expressions above, we obtain

E[Re
r(X, s, s′)]√

Var[Re
r(X, s, s′)]

=
√

psL psH
Λ(X, s, L)−Λ(X, s, H)

E[Λ(X, s, s′)]
. (78)

We consider next how the Sharpe ratio affects the risk-neutral expectation of future
productivity growth. The risk-neutral expectation of productivity is given by

EQ [xt+1] = psL
Λ(X, s, L)

E[Λ(X, s, s′)]
xL + psH

Λ(X, s, H)

E[Λ(X, s, s′)]
xH. (79)

The difference between the expected value of productivity under the physical measure
and the risk-neutral measure is given by

E[xt+1]−EQ[xt+1] = psL
E[Λ(X, s, s′)]−Λ(X, s, L)

E[Λ(X, s, s′)]
xL + psH

E[Λ(X, s, s′)]−Λ(X, s, H)

E[Λ(X, s, s′)]
xH.

(80)
Rearranging the expression above, we obtain

E[xt+1]−EQ[xt+1] = psL psH
Λ(X, s, L)−Λ(X, s, H)

E[Λ(X, s, s′)]
∆x, (81)

where ∆x = xH − xL.
Using the expression for the Sharpe ratio, we obtain

EQ[xt+1] = E[xt+1]−
√

psL psH
E[Re

r(X, s, s′)]√
Var[Re

r(X, s, s′)]
∆x. (82)

A.5 Proof of Proposition 2

Proof. We start by deriving the process for returns. From the market clearing condition
for goods, we obtain

xsh(E)α − ξ
h(E)1+ν

1+ν

P(X, s)
= 1− β (83)
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The return on the surplus claim is given by

Rp(X, s, s′) =
xsP(χ(X, s, s′), s′)

P(X, s)−
(

xsh(E)α − ξ
h(E)1+ν

1+ν

) =
xs

β

xs′h(E′(X, s))α − ξ
h(E′(X,s))1+ν

1+ν

xsh(E)α − ξ
h(E)1+ν

1+ν

. (84)

Using the conditions in (21), we can rewrite the expression as follows

Rp(X, s, s′) =
xs

β

xs′E′(X, s)
α

1+ν−α − α
1+ν E′(X, s)

1+ν
1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

. (85)

Note that the denominator in the expression above is positive if and only if E < 1+ν
α xs.

A sufficient condition is given by αxH < xL, as shown below

E ≤ xH <
xL

α
<

1 + ν

α
xs, (86)

and, similarly, this condition guarantees that the numerator is also positive.

Interest rate. The interest rate satisfies the condition Rb(X, s) =

E
[

Λ(X,s,s′)
E[Λ(X,s,s′)]Rp(X, s, s′)

]
, so Rb(X, s) is given by

Rb(X, s) =
(

1− α

1 + ν

)
xs

β

E′(X, s)
1+ν

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

, (87)

using the fact that E
[

Λ(X,s,s′)
E[Λ(X,s,s′)]xs′

]
= E′(X, s).

The expression above is increasing in E′(X, s), decreasing in xs, and it is increasing in
L for s = L.

Risk premium. The risk asset’s excess return is given by

Rp(X, s, s′)
Rb(X, s)

=
1

1− α
1+ν

xs′ − α
1+ν E′(X, s)

E′(X, s)
. (88)

The conditional risk premium is then given by

Es[Re
p(X, s, s′)] =

1
1− α

1+ν

Es[xs′ ]− E′(X, s)
E′(X, s)

, (89)

given the definition Re
p(X, s, s′) ≡ Rp(X,s,s′)−Rb(X,s)

Rb(X,s) .
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A.6 Proof of Proposition 3 and Corollary 1

Proof. We start by deriving the expression for the SDF. Note that we can express the SDF
in terms of Rp(X, s, s′) and Rb(X, s) instead of Rr(X, s, s′) and Rb(X, s), as we can always
obtain the SDF in terms of any two (linearly independent) assets. The SDF is then given
by

Λ(X, s, s′) =
1

pss′

1
Rb(X, s)

|Re
p(X, s,−s′)|
∆Re

p(X, s)
. (90)

The excess return on the surplus claim is given by

Re
p(X, s, s′) =

xs

β

(xs′ − E′(X, s))E′(X, s)
α

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

. (91)

Combining the previous two expressions, we obtain

Λ(X, s, s′) =
1

pss′

1
Rb(X, s)

|x−s′ − E′(X, s)|
∆x

(92)

using the fact that
Re

p(X,s,s′)
∆Re

p(X,s) =
xs′−E′(X,s)

∆x .

Demand for risk. The demand for risk in this economy is given by

I

∑
i=1

ηiσs[Ri,n(X, s, s′)] =
√

psL psH

[
psH(X, s)

psHΛ(X, s, H)
− psL(X, s)

psLΛ(X, s, L)

]
, (93)

where pss′(X, s) = ∑I
i=1 ηi,t pi

ss′ .
Using the expression for the SDF, the demand for risk can be written as

I

∑
i=1

ηiσs[Ri,n(X, s, s′)] = σs[xs′ ]

1+ν−α
1+ν

xs
β

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

[
psH(X, s)E′(X, s)

1+ν
1+ν−α

E′(X, s)− xL
− psL(X, s)E′(X, s)

1+ν
1+ν−α

xH − E′(X, s)

]
,

(94)
given σs[xs′ ] =

√
psL psH∆x.

The first term inside brackets in the expression above is decreasing in E′(X, s) if and
only if the following condition holds

1 + ν

1 + ν− α
E′(X, s)

1+ν
1+ν−α−1(E′(X, s)− xL)− E′(X, s)

1+ν
1+ν−α < 0 ⇐⇒ E′(X, s) <

xL

α
, (95)
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which holds, given that E′(X, s) ≤ xH < xL
α .

Therefore, the demand for risk is decreasing in E′(X, s). As E′(X, s) is decreasing in
the Sharpe ratio of the risky asset, then the demand for risk is increasing in the Sharpe
ratio.

Volatility of returns. The volatility of returns is given by

σs[Rp(X, s, s′)] =
xs

β

σs[xs′ ]E′(X, s)
α

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

, (96)

which is increasing in E′(X, s) and decreasing in xs.
Note that we can write the coefficient of variation of returns as follows:

σs[Rp(X, s, s′)]
Es[Rp(X, s, s′)]

=
σs[x′]

Es[xs′ ]

Es[xs′ ]E′(X, s)
α

1+ν−α

Es[xs′ ]E′(X, s)
α

1+ν−α − α
1+ν E′(X, s)

1+ν
1+ν−α

, (97)

so the presence of labor amplifies the volatility of returns.

Equilibrium. Combining supply and demand for risk, we obtain

xs

β

σs[xs′ ]E′(X, s)
α

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

=
1 + ν− α

1 + ν

xs

β

σs[xs′ ]E′(X, s)
1+ν

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

[
psH(X, s)

E′(X, s)− xL
− psL(X, s)

xH − E′(X, s)

]
.

(98)
The left-hand side is strictly increasing in E′(X, s), while the right-hand side is strictly

decreasing in E′(X, s) in the interval xL < E′(X, s) < xH. The right-hand side con-
verges to +∞ as E′(X′, s) approaches xL from above, and it converges to −∞ as E′(X, s)
approaches xH from below. Therefore, there exists a unique value of E′(X, s) solv-
ing the equation above in this interval. Note that the two curves intersect again for
E′(X, s) > xH, which can be seen by noticing that the right-hand is decreasing in E′(X, s)
for E′(X, s) > xH and converges to +∞ as E′(X, s) approaches xH from above. There-
fore, the economically relevant solution corresponds to the smallest of the two points of
intersection.

Rearranging the expression above, we obtain

1 =
1 + ν− α

1 + ν
E′(X, s)

psH(X, s)(xH − E′(X, s))− psL(X, s)(E′(X, s)− xL)

(E′(X, s)− xL)(xH − E′(X, s))
. (99)
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We then obtain a quadratic equation for E′(X, s):

α

1 + ν
E′(X, s)2−

[(
1− 1 + ν− α

1 + v
psH(X, s)

)
xH +

(
1− 1 + ν− α

1 + v
psL(X, s)

)
xL

]
E′(X, s)+ xLxH = 0

(100)
The equilibrium value is given by the smallest root of the equation above.

A.7 Proof of Proposition 4

Proof. We start by deriving the return on the investor’s portfolio. Given that markets are
complete, there exists a replicating portfolio ωr(X, s) such that

Rr(X, s, s′) = ωr(X, s)Rp(X, s, s′)+ (1−ωr(X, s))Rb(X, s)⇒ Re
r(X, s, s′) = ωr(X, s)Re

p(X, s, s′),
(101)

where ωr(X, s) = σs[Rr(X,s,s′)]
σs[Rp(X,s,s′)] =

∆Rr(X,s)
∆Rp(X,s) We can then write the return on the portfolio of

investor i as follows:

Ri,n(X, s, s′) = ωi(X, s)Re
r,t(X, s, s′)+Rb(X, s) = ωi(X, s)

∆Rr(X, s)
∆Rp(X, s)

Re
p,t(X, s, s′)+Rb(X, s).

(102)
Using condition (17) and the expression for the SDF, we obtain

Re
i,n(X, s, s′) = Rb(X, s)

[
pi

sH
E′(X, s)− xL

−
pi

sL
xH − E′(X, s)

]
∆xRe

p(X, s, s′)
∆Rp(X, s)

(103)

= Rb(X, s)

[
pi

sH
E′(X, s)− xL

−
pi

sL
xH − E′(X, s)

]
(xs′ − E′(X, s)). (104)

The return on the portfolio is then given by

Ri,n(X, s, L) =
∆xRb(X, s)

xH − E′(X, s)
pi

sL, Ri,n(X, s, H) =
∆xRb(X, s)

E′(X, s)− xL
pi

sH. (105)

Wealth share dynamics. The share of wealth of investor i is given by

η′i(X, s, s′) =
ηiRi,n(X, s, s′)

∑I
j=1 ηjRj,n(X, s, s′)

=
ηi pi

ss′

∑I
j=1 ηj p

j
ss′

= ηi
pi

ss′

pss′(X)
. (106)
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Long-run wealth dynamics. Note that the wealth share is a (bounded) martingale under
market beliefs:

psH(X)η′i(X, s, H) + psL(X)η′i(X, s, L) = ηi(pi
sH + pi

sL) = ηi. (107)

Therefore, from the martingale convergence theorem, the wealth share of investor i
converges. This implies that, for every ε, there exits T such that

|ηi,T+1 − ηi,T| < ε ⇐⇒ ηi

∣∣∣∣∣ pi
ss′ − pss′(X)

pss′(X)

∣∣∣∣∣ < ε, (108)

almost surely, where the economy is at the state (X, s) at period T.
This implies that either ηi converges to zero or pi

ss′ converges to pss(X). If pi
ss′ 6= pj

ss′

for any i, j ∈ I , i 6= j, then the wealth share of a single investor converges to one.
By definition, pi

sH > psH(X) for an optimistic investor in state (X, s), then the wealth
share of optimists increase in the good state and decline in the bad state. This implies that
market beliefs evolve according to

ps′H(X′) =
I

∑
i=1

η′i pi
s′H =

I

∑
i=1

ηi
pi

ss′

pss′(X)
pi

s′H, (109)

where

pHH(X′) =
I

∑
i=1

ηi
pi

sH
psH(X)

pi
HH ≥ psH(X), pLH(X′) =

I

∑
i=1

ηi
pi

sL
psL(X)

pi
LH ≤ psH(X).

(110)
This implies that the relative wealth share for investors i and j is given by

η′i(X, s, s′)
η′j(X, s, s′)

=
ηi

ηj

pi
ss′

pj
ss′

. (111)

Suppose investor j beliefs coincides with the objective measure. Then, the ratio above
is a martingale:

Es

[
η′i
η′j

]
= psL

ηi

ηj

pi
sL

psL
+ psH

ηi

ηj

pi
sH

psH
=

ηi

ηj
. (112)

If the wealth of investor j is bounded away from zero, then the above martingale is
bounded and, from the martingale convergence theorem, it converges almost surely.
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A.8 Proof of Corollary 2

Proof. Consider an economy that starts at s = H with wealth distribution {ηi}I
i=1 which

switches to the low state after either one period (early transition) or two periods (late
transition). Market beliefs on the low state in the case of an early transition are given by

pLH(X′) =
I

∑
i=1

ηi
pi

HL
pHL(X)

pi
LH, (113)

and market beliefs on the low state in the case of a late transition are given by

pLH(X′′) =
I

∑
i=1

η′i
pi

HL
pHL(X′)

pi
LH, (114)

where η′i = ηi
pi

HH
pHH(X)

.

Note that if investor i is optimistic, pi
HH > pHH(X), then η′i > ηi and p−i

HL(X′) ≤
p−i

HL(X), where p−i
HL(X) ≡ 1

1−ηi
∑j 6=i ηj p

j
HL. This implies that the following inequality

holds:

η′i
pi

HL
pHL(X′)

=
η′i pi

HL

η′i pi
HL + (1− η′i)p−i

HL(X′)
>

ηi pi
HL

ηi pi
HL + (1− ηi)p−i

HL(X)
= ηi

pi
HL

pHL(X)
. (115)

Therefore, there is more weight on the beliefs of investors who were optimistic in the
original state in the case of a late transition. In the case of rank-preserving beliefs, these
agents are also optimistic in the low state, so the market is more optimistic under a late
transition:

pLH(X′′) > pLH(X′). (116)

Alternatively, the market is now more pessimistic after a late transition in the case of
rank-alternating beliefs:

pLH(X′′) < pLH(X′). (117)

A similar argument shows that, under rank-preserving beliefs, the market is more
pessimistic after a late transition when the economy starts at state s = L:

pHH(X′′) =
I

∑
i=1

η′i
pi

LH
pLH(X′)

pi
HH <

I

∑
i=1

ηi
pi

LH
pLH(X)

pi
HH = pHH(X), (118)

where η′i = ηi
pi

LL
pLL(X)

. Alternatively, the market is more optimistic under a late transition
in the case of rank-alternating beliefs.
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A.9 Proof of Proposition 5

Proof. Volume

B Derivations

B.1 Markov equilibrium

From the market clearing for bonds and the expression for Bi,t from the Lemma ??, we
obtain

I

∑
i=1

µiNi,t = Qt +Ht + Athα
t − ξt

h1+ν
t

1 + ν
,

whereHt = ∑I
i=1 µiHi,t and using the market clearing condition for stocks and goods.

Using the pricing condition for stocks and bonds, we obtain

I

∑
i=1

µiNi,t = Et

[
∞

∑
k=1

Λt,t+kπt+k

]
+ Et

[
∞

∑
k=1

Λt,t+k

(
Wt+kht+k − ξt+k

h1+ν
t+k

1 + ν

)]
+ Athα

t − ξt
h1+ν

t
1 + ν

,

= Et

[
∞

∑
k=0

Λt,t+k

(
At+khα

t+k − ξt+k
h1+ν

t+k
1 + ν

)]
= At−1Pt. (119)

We can write the market clearing for goods as follows:

I

∑
i=1

µiNi,t

At−1Pt

Ci,t

Ni,t
=

Athα
t − ξt

h1+ν
t

1+ν

At−1Pt
. (120)

Using the definition of ηi,t and the result ∑I
i=1 µiNi,t = At−1Pt, we obtain the market

clearing condition for goods in recursive notation:

I

∑
i=1

ηici(X, s) =
xsh(E)α − ξ

h(E)1+ν

1+ν

P(X, s)
. (121)

Multiplying the market clearing condition for stocks by Qt and using the expression
for QtSi,t given in Lemma ??, we obtain

∑
i=1

µiωi,t(Ni,t − C̃i,t) = ωe,tQt + ωh,tHt, (122)
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using the fact thatHi,t = Ht and defining ωh,t ≡ ωhi,t.
We will show next that we can write the right-hand side in the expression above as

ωe,tQt + ωh,tHt = Qt +Ht. To show this fact, we start by the considering the return of
holding the aggregate amount of stocks and human wealth:

Re,t+1Qt + Rh,t+1Ht = [Qt+1 + At+1hα
t+1 −Wt+1ht+1] +

[
Ht+1 + Wt+1ht+1 − ξt+1

h1+ν
t+1

1 + ν

]

= AtPt+1 = Rr,t+1

[
At−1Pt −

(
Athα

t − ξt
h1+ν

t
1 + ν

)]
= Rr,t+1 (Qt +Ht) . (123)

This implies the following condition among excess returns:

Re
e,t+1Qt + Re

h,t+1Ht = Re
r,t+1 (Qt +Ht)

Re
r,t+1ωe,tQt + Re

r,t+1ωh,tHt = Re
r,t+1 (Qt +Ht) , (124)

which gives the desired result ωe,tQt + ωh,tHt = Qt +Ht, where we used the fact that
Re

k,t+1 = ωk,tRe
r,t+1 for k ∈ {e, h}.

Using the result above, we can write the market clearing condition on stocks as fol-
lows:

∑
i=1

µiNi,t(1− ci,t)

Qt +Ht
ωi,t = 1

∑
i=1

ηi,t At−1Pt(1− ci,t)

At−1Pt −
(

Athα
t − ξt

h1+ν
t

1+ν

)ωi,t = 1. (125)

Using the fact that
Athα

t−ξt
h1+ν

t
1+ν

At−1Pt
= ∑I

i=1 ηi,tci,t, we obtain

∑
i=1

η̃i,tωi,t = 1, (126)

where η̃i,t ≡
ηi(1−ci,t)

∑I
j=1 ηj(1−cj,t)

.

B.2 Trading volume

Turnover. We start by deriving our measure of trading volume. We focus on the case
ν = 0, such that Hi,t = 0 and the surplus claim coincides with a claim on the firms’
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profits.25 In this case, the portfolio share of stocks for a type-i investor is defined as
ωi,t ≡

QtSi,t
Ni,t(1−ci,t)

, so Si,t =
ωi,t Ni,t(1−ci,t)

Qt
. Given that 1− ci,t = β and Qt = βPt, we obtain

µi,tSi,t =
ωi,tµi Ni,t

Pt
= ωi,tηi,t. Shares traded by type-i investors are given by µi,t|Si,t −

Si,t−1| = |ωi,tηi,t −ωi,t−1ηi,t−1|. Trading volume is then given by

τt =
1
2

I

∑
i=1
|ωi,tηi,t −ωi,t−1ηi,t−1|. (127)

In recursive notation, we can write

τ(X, s, s′) =
1
2

I

∑
i=1
|ωi(X′, s′)η′i(X, s, s′)−ωi(X, s)ηi|, (128)

where X′ = χ(X, s, s′) and η′i(X, s, s′) = ηi
pi

ss′
pss′ (X)

.

Solving for the portfolio share. Using the expression for the economy-wide SDF and
Equation (17), we can write the portfolio share as follows

ωi(X, s) = pi
sH

Rb(X, s)
|Re

r(X, s, L)| − pi
sL

Rb(X, s)
Re

r(X, s, H)
. (129)

Using the fact that ν = 0, the return on the risky and riskless assets can be written as
follows:

Re
r(X, s, s′) =

xs

β

(xs′ − E′(X, s))E′(X, s)
α

1−α

xsE
α

1−α − αE
1

1−α

, Rb(X, s) = (1− α)
xs

β

E′(X, s)
1

1−α

xsE
α

1−α − αE
1

1−α

,

(130)
Combining the previous expressions, we obtain

ωi(X, s) = (1− α)

[
pi

sH
E′(X, s)

E′(X, s)− xL
− pi

sL
E′(X, s)

xH − E′(X, s)

]
, (131)

which is strictly decreasing in E′(X, s) and ωi(X, s) > 1 if and only if pi
sH > psH(X).

Turnover is then given by

τ(X, s, s′) = (1− α)
I

∑
i=1

ηi

∣∣∣∣∣
(

pi
s′HE′(X′, s′)

E′(X′, s′)− xL
−

pi
s′LE′(X′, s′)

xH − E′(X′, s′)

)
pi

ss′

pss′(X)
−
(

pi
sHE′(X, s)

E′(X, s)− xL
− pi

sLE′(X, s)
xH − E′(X, s)

)∣∣∣∣∣
(132)

25Notice that Wt = ξt when ν = 0, so ξt
h1+ν

t
1+ν = Wtht. This implies that Pt corresponds to the present

discounted value of firms’ profits and that human wealth is equal to zero for all investors.
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Perturbation. It is useful to parameterize the dispersion in beliefs as follows:

pi
ss′ = p∗ss′ + εδi

ss′ , (133)

where δi
sH + δi

sL = 0. If ε = 0, then there is no belief heterogeneity and τ(X, s, s′) = 0. We
consider next how turnover depends on belief heterogeneity for small deviations of this
benchmark, that is, for ε close to zero.

Notice that all equilibrium variables now depend on ε. For instance, the average prob-
ability of the high state can be written as

psH(X; ε) = p∗sH + δsH(X)ε +O(ε2), (134)

where δsH(X) ≡ ∑i=1 ηiδ
i
sH. Risk-neutral expectation of productivity growth is a function

of E′(X, s; ε) = fs(psH(X)), where fs(p) satisfies the condition

1 = (1− α)

[
p

fs(p)
fs(p)− xL

− (1− p)
fs(p)

xH − fs(p)

]
⇒ f ′s(p) =

fs(p)
fs(p)−xL

+ fs(p)
xH− fs(p)

p xL
( f (p)−xL)2 + (1− p) xH

(xH− fs(p))2

.

(135)
Let E∗(X, s) ≡ E′(X, s; 0) denote the value of E′(X, s) when ε = 0. In this case, we can

drop the dependence on X and simply write E∗(s), as E′(X, s) would only depend on the
state s. We can then expand E′(X, s; ε) in ε to obtain:

E′(X, s; ε) = E∗(s) + Ẽ(X, s)ε +O(ε2), (136)

where Ẽ(X, s) = f ′(p∗sH)∑I
i=1 ηiδ

i
sH, where f ′(·) > 0.

We can then write the portfolio share of investor i as follows

ωi(X, s; ε) = 1 +
[
θω,1(s)δi

sH − θω,2(s)δsH(X)
]

ε +O(ε2), (137)

where θω,1(s) > 0 and θω,2(s) > 0

θω,1(s) ≡ (1− α)

(
E∗(s)

E∗(s)− xL
+

E∗(s)
xH − E∗(s)

)
(138)

θω,2(s) ≡ (1− α)

[
p∗sHxL

(E∗(s)− xL)2 +
p∗sLxH

(xH − E∗(s))2

]
f ′(p∗sH). (139)

Using the expression for f ′(·), we obtain that θω,1 = θω,2. We can then write ωi(X, s; ε)
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as follows:
ωi(X, s; ε) = 1 + θω,1(s)

[
δi

sH − δsH(X)
]

ε +O(ε2), (140)

The evolution of wealth is given by

η′i(X, s, s′; ε) = ηi + ηi
δi

ss′ − δss′(X)

p∗ss′
ε +O(ε2) (141)

Let pH(X, s, s′; ε) = ∑I
i=1 η′i(x, s, s′; ε)pi

s′H denote the market-implied probability of the
high state after a transition to state s′, then

pH(X, s, s′; ε) = p∗s′H + δs′H(X)ε +O(ε2), (142)

where δs′H(X) ≡ ∑I
i=1 ηi

δi
ss′−δss′ (X)

p∗
ss′

p∗s′H + ∑I
i=1 ηiδ

i
s′H = ∑I

i=1 ηiδ
i
s′H.

The portfolio share next period is given by

ω′i(X, s, s′; ε) = 1 + θω,1(s′)
[
δi

s′H − δs′H(X)
]

ε +O(ε2). (143)

Investor i’s net purchases of shares is given by

∆Si(X, s, s′; ε) = ηi

[
δi

ss′ − δss′(X)

p∗ss′
+ θω,1(s′)

(
δi

s′H − δs′H(X)
)]

ε− θω,1(s)ηi

[
δi

sH − δsH(X)
]

ε+O(ε2)

(144)

For simplicity, suppose that investors believe productivity growth to be iid in the ref-
erence economy, that is, p∗Ls′ = p∗Hs′ . We can then write the

∆Si(X, s, s′; ε) =

 ∆ω̃i(X, s, s′)ηi︸ ︷︷ ︸
change-in-beliefs effect

+ ∆η̃i(X, s, s′)︸ ︷︷ ︸
rebalancing effect

 ε +O(ε2), (145)

where

∆ω̃i(X, s, s′) ≡ θω,1

[(
δi

s′H − δs′H(X, s)
)
−
(

δi
sH − δsH(X)

)]
(146)

∆η̃i(X, s, s′) ≡ ηi
δi

ss′ − δss′(X)

p∗ss′
. (147)

The change-in-beliefs effect captures the fact that investors buy (sell) the asset if they
are more optimistic (pessimistic) in state s′ than in state s. This effect is equal to zero when
s = s′. The rebalancing effect captures the fact that investors buy (sell) the asset if their
share of wealth increases (decreases) after the economy switches to state s′, even if there
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is no change in the desired portfolio share ωi.
Turnover is given by

τ(X, s, s′; ε) =
1
2

I

∑
i=1

ηi

∣∣∣∣∣ δ̃i
ss′

p∗ss′
+ κω

(
δ̃i

s′H − δ̃i
sH

)∣∣∣∣∣ ε +O(ε2), (148)

where δ̃i
ss′ = δi

ss′ − δss′(X).
Suppose s = s′, then

τ(X, s, s′; ε) =
1
2

I

∑
i=1

ηi

∣∣δ̃i
ss′(X)

∣∣
p∗ss′

ε +O(ε2) (149)

=
1
2

[
I

∑
i=1

ηi
δ̃i

ss′(X)

p∗ss′
1δ̃i

ss′ (X)≥0 −
I

∑
i=1

ηi
δ̃i

ss′(X)

p∗ss′
1δ̃i

ss′<0

]
ε +O(ε2) (150)

=
1
2

[
ηB

δ̃B
ss′(X)

p∗ss′
+ ηS

|δ̃S
ss′(X)|
p∗ss′

]
ε +O(ε2). (151)

where

ηB ≡
I

∑
i=1

ηi1δ̃i
ss′ (X)≥0, δ̃B

ss′(X) ≡ 1
ηB

I

∑
i=1

ηi δ̃
i
ss′(X)1δ̃i

ss′ (X)≥0, (152)

ηS ≡
I

∑
i=1

ηi1δ̃i
ss′ (X)<0, δ̃S

ss′(X) ≡ 1
ηS

I

∑
i=1

ηi δ̃
i
ss′(X)1δ̃i

ss′ (X)<0. (153)

We can write turnover in this case as follows

τ(X, s, s′; ε) = ηBηS
δB

ss′(X) + |δS
ss′(X)|

p∗ss′
ε +O(ε2), (154)

using the fact that δss′(X) = ηBδB
ss′(X) + ηSδS

ss′(X).

Heterogeneous persistence. We consider next the special case where investors agree
about the unconditional mean of x, but they disagree about the persistence of the aggre-
gate productivity growth.

The stationary distribution of beliefs for investor i is given by

pi
L =

pi
HL

pi
LH + pi

HL
. (155)

We assume that pi
L is equalized across investors, so all investors agree about the un-
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conditional mean of xt. Note this implies that the likelihood ratio pi
LH/pi

HL is equalized
across investors. The unconditional mean is given by

x =
pi

HL

pi
LH + pi

HL
xL +

pi
LH

pi
LH + pi

HL
xH. (156)

The expected value of xt+1 relative to the mean x conditional on xt = xL is given by

Ei[xt+1 − x|xt = xL] = pi
LL(xL − x) + pi

LH(xH − x) (157)

=

[
1 + pi

LH
xH − xL

xL − x

]
(xL − x) (158)

=
[
1− (pi

LH + pi
HL)
]
(xL − x), (159)

using the fact that x− xL =
pi

LH
pi

LH+pi
HL
(xH − xL)

We obtain a similar expression conditioning on xt = xH instead:

Ei[xt+1 − x|xt = xH] = pi
HL(xL − x) + pi

HH(xH − x) (160)

=

[
1− pi

HL
xH − xL

xH − x

]
(xH − x) (161)

=
[
1− (pi

LH + pi
HL)
]
(xH − x), (162)

using the fact that xH − x =
pi

HL
pi

LH+pi
HL
(xH − xL).

Let x̂t = xt − x, we can then write

Ei[x̂t+1|x̂t] = θi x̂t, (163)

where θi ≡ 1− (pi
LH + pi

HL) = pi
HH − pi

LH.
Given that investors agree about the unconditional mean of x, we are able to pin down

beliefs as a function of θi:

pi
LH = pH(1− θi), pi

HH = pH + pLθi. (164)

Corollary. Under the assumption investors agree about the unconditional mean of xt,
we have that

pi
LH − pLH(X) = −pH(θi − θ(X)), pi

HH − pHH(X) = pL(θi − θ(X)), (165)
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where θ(X) ≡ ∑I
i=1 ηiθi.

Notice that we have that δ̃i
ss′(X)ε = pi

ss′ − pss′(X), which gives us

δ̃i
LH(X)ε = −pH(θi − θ(X)), δ̃i

HH(X)ε = (1− pH)(θi − θ(X)). (166)

We can then write turnover in the case s = L and s′ = H as follows:

τ(X, L, H; ε) =
1
2

∣∣∣∣κω −
pH
p∗H

∣∣∣∣ I

∑
i=1

ηi|θi − θ(X)|+O(ε2). (167)

Consider now the case s = H and s′ = L:

τ(X, H, L; ε) =
1
2

∣∣∣∣κω +
pL
p∗L

∣∣∣∣ I

∑
i=1

ηi|θi − θ(X)|+O(ε2), (168)

Suppose now that s = s′ = L, then

τ(X, H, H; ε) =
1
2

∣∣∣∣ pL
p∗H

∣∣∣∣ I

∑
i=1

ηi|θi − θ(X)|ε +O(ε2) (169)

τ(X, L, L; ε) =
1
2

∣∣∣∣ pH
p∗L

∣∣∣∣ I

∑
i=1

ηi|θi − θ(X)|ε +O(ε2). (170)

C Estimating the Heterogeneity in Beliefs

C.1 The process for realized and expected earnings

Let i ∈ I denote a firm-analyst pair. We index both firm-level outcomes and the ex-
pectations of the analyst covering this firm by i. We denote (realized) earnings for firm
i at period t by ei,t and the first-difference of realized earnings by ∆ei,t = ei,t − ei,t−1.26

We denote aggregate earnings by et and the first-difference of aggregate earnings by ∆et.
Realized earnings follows the process:

∆ei,t = βi∆et + ui,t, (171)

where ui,t = ρiui,t−1 + εi,t and εi,t ∼ N (0, σ2
ε ). The error term εi,t is assumed to be i.i.d.

and independent of ∆et. We assume that ∆ei,t and ∆et have already been de-meaned, so

26As ei,t can potentially be negative, we work with first differences instead of proportional differences,
∆ei,t
ei,t

, or log-differences, ∆ log(ei,t). By focusing on first differences, we do not have to drop firms which
experience negative earnings, which is a significant fraction of our sample.
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we can omit the intercept. We also assume that ∆ei,t and ∆et have been normalized to
have unit variance.

Given the formulation above, individual earnings depend on aggregate shocks, i.e.
shocks that affect aggregate earnings, as well as idiosyncratic shocks, as captured by ui,t.
The parameters ρi controls the persistence of idiosyncratic shocks. Hence, firms are al-
lowed to be heterogeneous on their exposure to the aggregate shock as well as the persis-
tence of idiosyncratic shocks.

We assume that analysts understand that individual earnings follows the process
(171), but they potentially disagree on the process followed by aggregated earnings. In
particular, we assume that analyst i believe (in a dogmatic fashion) that ∆et follows the
following process:

∆et = θi∆et−1 + νi,t, (172)

where νi,t is an i.i.d. process given by νi,t ∼ N (0, σ2
ν ). We assume that analysts agree on

the unconditional mean for ∆et, which we normalize to zero. This allow us to focus only
on disagreement about the persistence of shocks to aggregate earnings.

The expected change in aggregate earnings using the subjective beliefs of analyst i is
given by

Ei,t[∆et+1] = θi∆et, (173)

where Ei,t[·] denote the conditional expectation at t according to the subjective beliefs of
analyst i.

We assume that ∆et is perfectly observed by investors at time t, so differences in beliefs
are controlled by θi. A relatively high value for θi implies that analyst i is more optimistic
about aggregate earnings after a positive shock and more pessimistic after a negative
shock, capturing a form of belief extrapolation.

Notice that expectations of changes in individual earnings depend on the degree of
persistence of shocks to aggregate earnings θi:

Ei,t[∆ei,t+1] = βiθi∆et + ρiui,t. (174)

Equation (174) shows that we can infer properties of the process for subjective beliefs
on aggregate earnings using information on subjective beliefs about individual earnings.
This is important as beliefs on aggregate earnings are not directly available.
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C.2 Estimation procedure

We show next how to estimate (βi, ρi, θi) in two stages. First, we estimate the parameters
in Equation (171). In a second stage, we obtain the distribution of θi, using Equation (174)
and the parameters estimated in the first stage.

First stage. Consider first Equation (171). We can rewrite the process for ∆ei,t as follows:

∆ei,t = βi∆et + ρi (∆ei,t−1 − βi∆et−1) + εi,t, (175)

where we used the fact that ui,t = ∆ei,t − βi∆et.
To ensure that −1 < ρi < 1, we consider the following change of variables. As-

sume that ρi is given by the a non-linear transformation of the parameter ρ̃i ∈ R:
ρi = −1 + 2 exp(ρ̃i)

1+exp(ρ̃i)
∈ (−1, 1). The parameters (βi, ρ̃i) can in principle be estimated

using, for instance, non-linear least squares for each company i. We proceed instead by
estimating the parameters simultaneously for all i using Bayesian methods. The Bayesian
approach is useful as it allow us to regularize the individual estimates and avoid overfit-
ting, which can be a concern in settings where the length of the time series is not particu-
larly long.27

Formally, we consider the following multi-level priors:

βi ∼ N (β, σ2
β), ρ̃i ∼ N (ρ, σ2

ρ ), (176)

The coefficients (β, ρ) and (σβ, σρ) are referred to as hyperparameters and they have
their own priors, which are given by

β ∼ N (0, 1.502), ρ ∼ N (0, 0.502), (177)

and the standard-deviation for each parameter is assumed to follow a Half Student-t dis-
tribution with 3 degrees of freedom, a standard value for this class of models. These priors
are set to be wide enough to capture the range of plausible values for the parameters.

The multi-level structure allow us to obtain a form of adaptive regularization. If (say)
σβ is very large, then the prior on βi is not very informative, and this would be analogous
to estimate βi independently for each i. If σβ ≈ 0, then we have effectively a pooling es-
timator, where βi will be the same for all i. For intermediate values of σβ, the parameters

27This procedure is analogous to a ridge regression, where the estimates are regularized using a L2
penalty (see e.g. Hastie et al., 2009). For a discussion of how regularized regressions can be reinterpreted
as a Bayesian procedure, see e.g. Nagel (2021).
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are allowed to vary across units, but they are partially shrunk towards the population
mean. The shrinkage of the parameters limits the effect of noise or measurement error, as
the model is essentially skeptical of extreme values. Because σβ is also an estimated pa-
rameter, the extent to which estimates are regularized is directly informed by the data.28

Second stage. Consider next Equation (174), which relates subjective beliefs about in-
dividual earnings to realized aggregate and individual earnings. To capture the fact
that (subjective) expectations are potentially measured with error, we assume that only
a noisy version of the analyst’s expectation is observed, which is given by Êi,t[∆ei,t+1] =

Ei,t[∆ei,t+1] + w̃i,t. The measurement error w̃i,t is assumed to be a mean-zero normally
distributed i.i.d. process with variance given by σ2

w. Combining this measurement equa-
tion with Equation (174) and isolating the terms estimated in the first stage, we obtain the
following estimating equation:

zi,t = αi + θixi,t + wi,t, (178)

where zi,t ≡ Êi,t[∆ei,t+1]− ρiui,t and xi,t ≡ βi∆et. Notice that zi,t and xi,t are known at this
stage, so it only remains to estimate θi,t.

As before, we use a Bayesian multi-level model to adaptively regularize our estimates.
We also consider the transformation θi = −1 + 2 exp(θ̃i)

1+exp(θ̃i)
, where θ̃i ∈ R, such that we can

ensure that θi ∈ (−1, 1). We assume the following prior for θ̃i,t:

θi,t ∼ N (θ, σ2
θ ), (179)

where θ ∼ N (0, 0.52) and σθ follows a half Student-t distribution with 3 degrees of free-
dom.

C.3 Data and estimation results

Data. We use data from I/B/E/S on analysts expectations about firms’ future earnings.
For firms with coverage of more than one analyst, we use the consensus expectation for
that firm. We drop firms with missing values for realized or expected earnings in more
than 20% of the sample. We ended up with 579 firms covering the time period from March
1977 until December 2020, with a total of 44, 267 company-quarter pairs.

28For more details on how multi-level models provide a form of adaptive regularization, see e.g. the
discussion in McElreath (2020).
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Table 4: Cross-sectional mean and dispersion of parameters

Estimate Est.Error l-95% CI u-95% CI Rhat

E[βi] 0.03 0.01 0.01 0.04 1.00
E[ρi] 0.45 0.02 0.41 0.50 1.00
E[θi] -0.48 0.12 -0.72 -0.24 1.00
σ[βi] 0.09 0.01 0.08 0.10 1.00
σ[ρi] 0.47 0.02 0.43 0.51 1.00
σ[θi] 0.19 0.13 0.01 0.49 1.00

Note: Posterior mean and credible intervals (CI) for the cross-sectional mean, E[xi ], and cross-sectional standard-deviation, σ[xi ], for
parameters x ∈ {β, ρ, θ}. Rhat is an indicator of the convergence of the chains during sampling. Rhat = 1 indicates convergence.

Model fitting and results. We sample the model using an extension of Hamiltonian
Monte Carlo, the no-U-turn sampler (NUTS) by Hoffman et al. (2014), as implemented
in R Stan. Table 4 reports the posterior mean and 95% credible intervals for the cross-
sectional mean and dispersion of parameters (βi, ρi, θi). Because we have standardized
all the variables, the parameter βi captures the correlation between individual and aggre-
gate earnings. The correlation is close to zero reflecting the fact that typically most of the
variation in a company’s earnings reflect idiosyncratic shocks. However, there is substan-
tial heterogeneity in this parameter, with the cross-sectional dispersion being three times
the average βi. This can be seen in the left panel of Figure 6, which shows the posterior
mean of the kernel density for βi, where βi ranges from −0.3 to 0.4. The average auto-
correlation coefficient ρi is positive, but it is also very dispersed across firms, as shown
in the middle panel of Figure 6. Finally, we have that θi is on average negative, which
is consistent with the fact that ∆et has a negative autocorrelation. However, the average
subjective coefficient of autocorrelation is more negative than its objective counterpart, as
E[θi] = −0.48 and we obtain a coefficient of autocorrelation of −0.28 for ∆et using ag-
gregate data. As before, we observe substantial heterogeneity in θi, as shown in the right
panel of Figure 6.

C.4 Belief disagreement and stock market turnover

We consider next a measure of belief disagreement. Notice that the expectation of analyst
of aggregate earnings growth is given by Ei[∆et+1] = θi∆et. This motivates our definition
of a disagreement index DIt, which corresponds to the cross-sectional dispersion in beliefs
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Figure 6: Kernel estimate of cross-sectional distribution of the different parameters
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Note: Posterior mean of the kernel density for the cross-section of θi (left panel), ρi (middle panel), and θi (right panel).

about aggregate earnings growth:

DIt = σ[θi]× |∆et|︸ ︷︷ ︸
σ[Ei[∆et+1]]

. (180)

The disagreement index has two components. First, the cross-sectional dispersion in
the parameter θi. If all analysts agree on the persistence of aggregate earnings growth,
such that σ[θi] = 0, then the disagreement index would be equal to zero. Second, the
absolute value of aggregate earnings growth, |∆et|. Given that ∆et has been already de-
meaned, |∆et| captures the distance of aggregate earnings growth to its mean. If aggre-
gate earnings growth is already at its average value, |∆et| = 0, then disagreement on how
∆et reverts to its plays no role in determining expectations. Therefore, the level of dis-
agreement in the economy depends on the interaction between dispersion in beliefs and
deviations of aggregate earnings growth from its mean.

The left panel of Figure 7 shows the time series of the disagreement index. The dis-
agreement index is typically low during normal times and it significantly spikes in pe-
riods of crises, where aggregate earnings growth deviates substantially from its average
value.

Turnover. One important implication of theories with heterogeneous beliefs is that the
level of disagreement is related to the amount of trading in the economy. To test this
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Figure 7: Time series of the disagreement index and stock market turnover
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Note: Left panel shows the time series of the disagreement index and the right panel shows the time-series of stock market turnover.
The smooth line in the right panel is the HP-filter trend of turnover. The vertical bars represent NBER recessions.

implication, we consider next a measure of trading activity, the (value-weighted) stock
market turnover.29 We measure the stock turnover - shares traded divided by shares
outstanding - for individual securities on the New York and American Stock Exchanges
from January 1977 to December 2021. We measure turnover at the quarterly frequency
and compute an aggregate turnover measure using a value-weighted average (similar
results are obtained by using an equal-weight measure). The right panel of Figure 7 shows
the time series of turnover. We can observe that the turnover level changed significantly
over time and that turnover has an important cyclical component.

Belief disagreement and turnover. We consider next the relationship between belief
disagreement and turnover. Table 5 shows the result of a time-series regression of
turnover on the disagreement index. As shown in Figure 7, the disagreement index se-
ries has a few outliers, in particular, during crisis periods. To ensure that the relation-
ship between turnover and disagreement is not driven only by these extreme periods,
we consider a sample where we exclude observations where the disagreement index is
below the 2.5% percentile or above the 97.5% percentile. Column (1) shows that there
is a strong statistically significant association between DI and turnover, where we com-
pute Newey-West standard-errors with four lags. If the disagreement index goes from
its 25% percentile to its 75% percentile, turnover increases by 8.0 percentage points, an

29For a discussion of turnover as a measure of trading volume and its connection with standard portfolio
theory, see Lo and Wang (2010).
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Table 5: Regression of turnover on disagreement index

Dependent Variable: turnover
Model: (1) (2) (3)

Variables
(Intercept) 0.2580∗∗∗ 0.2420∗∗∗ 0.2549∗∗∗

(0.03373) (0.04375) (0.0369)
DI 1.239∗∗∗ 1.798∗∗ 1.260∗∗∗

(0.2277) (0.6277) (0.2898)
DI2 -2.068 -0.6879∗∗

(1.6920) (0.2094)

Fit statistics
Observations 165 165 175
R2 0.24084 0.24786 0.30386
Adjusted R2 0.23618 0.23857 0.29576

Newey-West standard-errors in parentheses (4 lags)
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Columns (1) and (2) .

increase of almost 30%. Column (2) tests whether this relationship is nonlinear by intro-
ducing a quadratic term, again in the example where we exclude outliers. We find that
the quadratic term is not significant, consistent with a linear relationship. This can be ver-
ified visually in Figure 8, which shows the scatterplot of turnover and the disagreement
index for this sample. Column (3) shows the regression of turnover on DI and DI2 for
the full sample. We find that the quadratic term is now statistically significant, indicating
the necessity of considering a nonlinear relationship to capture the effect of the extreme
crisis-level disagreement. The magnitude of the marginal effect of changing DI is similar
to the linear case for large of values for the disagreement index. Therefore, we conclude
that belief disagreement is strongly associated with stock market turnover.
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Figure 8: Scatterplot of the disagreement index and stock market turnover
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Online Appendix

O1 The case with an arbitrary number of states

O1.1 Environment

We consider an extension of the model in Section 2 where aggregate productivity growth
xt takes N possible values, i.e. xt ∈ {x1, x2, . . . , xN} ≡ X , where x1 < x2 < . . . < xN.
The objective probability of switching from state s ∈ {1, 2, . . . , N} ≡ S to state s′ ∈
S is denoted by pss′ and the corresponding subjective probability for household i ∈ I
is denoted by pi

ss′ . Households can trade Arrow securities that pay off conditional on
every possible state. We also assume that households die with probability κ and leave
their financial wealth to their child, which will have type j with probability µj. This
assumption ensures that a non-degenerate stationary distribution of wealth exists. The
next proposition provides a characterization of the equilibrium in this N-state economy.
The main conclusion is that the results of Section 2 are essentially unchanged in this more
general setting.

Proposition O.1 (N-state economy). Suppose that xt ∈ X , where xt takes N possible values.

i. The (scaled) household’s problem can be written as follows

vi(X, s)1−ψ−1 − 1
1− ψ−1 = max

ci,R′i,n
(1− β)

c1−ψ−1

i − 1
1− ψ−1 + β

Ei
[
(vi(X′, s′)n′)1−γ

] 1−ψ−1
1−γ − 1

1− ψ−1 ,

(O1.1)
subject to the flow budget constraint n′ = R′i,n(1− ci), the natural borrowing limit n′ ≥ 0,
and the portfolio-return constraint

Es[Λ′R′i,n] = 1. (O1.2)

ii. Consumption-wealth ratio and the investor’s SDF are given by

ci(X, s) =
(β−1 − 1)ψRi(X, s)1−ψ

1 + (β−1 − 1)ψRi(X, s)1−ψ
, (O1.3)

Λi(X, s, s′) = βθ

(
ci(χ(X, s, s′), s′)N′

ci(X, s)N

)− θ
ψ

Ri,n(X, s, s′)−(1−θ), (O1.4)
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and the change-of-measure condition is given by

Λi(X, s, s′) =
pss′

pi
ss′

Λ(X, s, s′). (O1.5)

iii. Wages, hours, and profits are given by

h(E) =
(

αE
ξ

) 1
1+ν−α

, w(E) = ξ

(
αE
ξ

) ν
1+ν−α

, π(E, s) =
(

α

ξ

) α
1+ν−α [

xsE
α

1+ν−α − αE
1+ν

1+ν−α

]
.

(O1.6)

iv. The law of motion of the endogenous aggregate state variables is given by

E′(X, s) = ∑
s′∈S

pss′Λ(X, s, s′)
∑s̃∈S pss̃Λ(X, s, s̃)

xs′ , (O1.7)

η′i(X, s, s′) =
(1− κ)ηiRi,n(X, s, s′)(1− ci(X, s))

∑I
j=1 ηjRj,n(X, s, s′)(1− cj(X, s))

+ κµi. (O1.8)

v. The market clearing conditions for consumption and the Arrow security for state s ∈ S are
given by

I

∑
i=1

ηici(X, s) =
xsh(E)α − ξ

h(E)1+ν

1+ν

P(X, s)
,

I

∑
i=1

η̃iRn,i(X, s, s′) = Rp(X, s, s′),

(O1.9)
where η̃i ≡ ηi(1−ci(X,s)

∑I
j=1 ηj(1−cj(X,s)

.

Proof. See Online Appendix O3.1.

An implication of the result above is that the LDF corresponds to the risk-neutral ex-
pectation of productivity growth. The following corollary shows that E′(X, s) can be ex-
pressed as the expected productivity growth (under the objective probability measure)
discounted by a risk premium.

Corollary 4. Let Rg(X, s, s′) denote the return on a claim on productivity growth, then

log E′(X, s) = log Es[xs′ ]− log Re
g(X, s), (O1.10)

where Re
g(X, s) ≡ ∑s′∈S pss′

Rg(X,s,s′)
Rb(X,s) is the risk premium on a claim on productivity growth.

Proof. The price of a claim on productivity growth is given by

Pg(X, s) = Es[Λ(X, s, s′)xs′ ], (O1.11)

2



and the return on this claim is given by Rg(X, s, s′) = xs′
Pg(X,s) .

Expressing the pricing condition above in terms of covariances, we obtain

Es[Rg(X, s, s′)]− Rb(X, s) = −Covs

(
Λ(X, s, s′)

Es[Λ(X, s, s′)]
,

xs′

Pg(X, s)

)
. (O1.12)

Similarly, we can write E′(X, s) in terms of covariances:

E′(X, s) = Es[xs′ ] + Covs

(
Λ(X, s, s′)

Es[Λ(X, s, s′)]
, xs′

)
. (O1.13)

Using the fact that Pg(X, s) = E′(X, s)/Rb(X, s), we can combine the expressions
above to obtain

E′(X, s) = Es[xs′ ]−
(

Es[Rg(X, s, s′)]
Rb(X, s)

− 1
)

E′(X, s)⇒ E′(X, s) =
Es[xs′ ]

Re
g(X, s)

. (O1.14)

O1.2 Special Case I: Log utility

We consider next the special case where ψ = γ = 1 for the economy with an arbitrary
number of states. Proposition O.2 below shows that the main implications from Section 4
extends to this more general economy.

Proposition O.2 (Log-utility). Suppose ψ = γ = 1 and that the following condition is satisfied
xN < x1

α .

i. Consumption and portfolio decisions are given by

ci(X, s) = 1− β, Ri,n(X, s, s′) =
pi

ss′

pss′(X)
Rp(X, s, s′). (O1.15)

ii. The economy’s SDF is given by

Λ(X, s, s′) =
pss′(X)

pss′
R′p(X, s, s′)−1. (O1.16)
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iii. The price and return on the surplus claim are given by

P(X, s) =
xsh(E)α − ξ

h(E)1+ν

1+ν

1− β
, (O1.17)

Rp(X, s, s′) =
xs

β

xs′E′(X, s)
α

1+ν−α − α
1+ν E′(X, s)

1+ν
1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

. (O1.18)

iv. The risk premium on the surplus claim and the interest rate are given by

Rb(X, s) =
(

1− α

1 + ν

)
xs

β

E′(X, s)
1+ν

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

, (O1.19)

Es[Re
p(X, s, s′)] =

xs

β

[Es[xs′ ]− E(X, s)]E′(X, s)
α

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

. (O1.20)

v. The law of motion of the aggregate state variables are given by

E′(X, s) = ∑
s′∈S

xs′
pss′(X)

[
xs′ − α

1+ν E′(X, s)
]−1

∑s̃∈S pss̃(X)
[
xs̃ − α

1+ν E′(X, s)
]−1 (O1.21)

η′i(X, s, s′) = (1− κ)ηi
pss′

pss′(X)
+ κµi, (O1.22)

and there exists a unique value of E′(X, s) ∈ (x1, xN) satisfying the law of motion of L.

Proof. See Online Appendix O3.2.

O1.3 Special Case II: Representative Agent with IID Returns

We consider next a different special case which is also particularly tractable: investors
have common iid beliefs, pi

ss′ = p∗s′ , and the supply and demand of labor converge to zero.
Formally, we assume α = α̂ε and ξ = ξ̂ε and take the limit as ε goes to zero. For simplicity,
we focus on the case κ = 0. Because labor is chosen in advance, returns on financial assets
would not be iid even if the process for aggregate productivity is iid. By taking the limit as
supply and demand goes to zero, we ensure that all equilibrium objects are well-defined
in the limit and the economy behaves essentially as an endowment economy, analogous
to an iid version of the Mehra and Prescott (1985) economy.

Proposition O.3 provides a characterization of this limit economy. To highlight these
results apply to this particular limit, we denote the equilibrium objects in the limiting
economy with an ∗, e.g. v∗(X, s) and c∗(X, s).
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Proposition O.3 (IID Returns). Suppose pi
ss′ = p∗s′ , α = α̂ε, and ξ = ξ̂ε. Suppose also the

following condition is satisfied: β∗ ≡ βE∗[x1−γ
s′ ]

1−ψ−1
1−γ < 1. Then, the economy in the limit as

ε→ 0 satisfies the following conditions:

i. Consumption and portfolio decisions:

c∗i (X, s) = 1− β∗, R∗i,n(X, s, s′) = R∗p(X, s, s′). (O1.23)

ii. The net-worth multiplier v∗i (X, s) is given

v∗i (X, s) = (1− β)
1

1−ψ−1 (1− β∗)
− ψ−1

1−ψ−1 . (O1.24)

iii. Wages, hours, and profits are given by

h∗(E) =
(

α̂E
ξ̂

) 1
1+ν

, w∗(E) = 0, π∗(E, s) = xs. (O1.25)

iv. The economy’s SDF is given by

Λ∗(X, s, s′) = βE∗[x1−γ
s′ ]

γ−ψ−1
1−γ x−γ

s′ . (O1.26)

v. The price and return on the surplus claim are given by

P∗(X, s) =
xs

1− β∗
, R∗p(X, s, s′) =

x′s
β∗

. (O1.27)

vi. The risk-free rate and the expected return on the surplus claim are given by

R∗b(X, s) =
1
β∗

E∗[x1−γ
s′ ]

E∗[x−γ
s′ ]

, (O1.28)

E∗[Rp(X, s, s′)] = Rb(X, s)
E∗[xs′ ]E

∗[x−γ
s′ ]

E∗[x1−γ
s′ ]

. (O1.29)

vii. The law of motion of the state variables are given by

E′(X, s) = E∗, η′i(X, s, s′) = ηi. (O1.30)
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where E∗ ≡ E∗[x1−γ

s′ ]

E∗[x−γ

s′ ]
.

Proof. See Online Appendix O3.3.

The following corollary shows that we recover the standard asset pricing formulae for
iid economies in continuous time if we assume that xs is approximately log-normal.

Corollary 5. Suppose log xs can be approximated by a normal distribution with mean µ and
variance σ2. Then, under the assumption of Proposition O.3, we obtain

i. Interest rate:

log R∗b(X, s) ≈ ρ + ψ−1
(

µ +
σ2

2

)
− γ(1 + ψ−1)

2
σ2, (O1.31)

where ρ ≡ − log β.

ii. Risk-premium:

log E

[
R∗p(X, s, s′)

R∗b(X, s)

]
≈ γσ2. (O1.32)

iii. Risk-neutral expectation of productivity growth:

log
E′(X, s)
E[xs′ ]

≈ −γσ2. (O1.33)

The corollary above shows how E′(X, s) depends on xs′ and the equity risk premium.

O2 Approximate Solution of the General Economy

In the previous section, we derived exact analytical solutions for two special cases: i)
log-utility; ii) homogeneous beliefs and iid returns. In this section, we derive asymptotic
closed-form solutions for a general economy with an arbitrary number of states, an ar-
bitrary number of households with heterogeneous beliefs, and Epstein-Zin preferences
with unrestricted EIS and risk aversion. The derivations for the benchmark case with
homogeneous beliefs and iid returns will be useful in deriving the approximate solution.

O2.1 Perturbation

Consider a family of economies indexed by ε. The parameter ε controls three dimensions
through which these economies differ from each other. First, it determines the degree of

6



belief heterogeneity:
pi

ss′ = p∗s′ + δi
ss′ε, (O2.1)

where ∑s′∈S δi
ss′ = 0. We also assume that the objective measure coincides with beliefs in

the reference economy, i.e. pss′ = p∗s′ . Second, ε scales both supply and demand for labor:

ξ = ξ̂ε, α = α̂ε. (O2.2)

The economy satisfying ε = 0 is essentially an endowment economy with iid common be-
liefs, a special case of the Mehra and Prescott (1985) economy, as described above. Third,
we assume that κ = κ̂ε, such that there is no mortality risk in the benchmark economy.

All equilibrium objects are now indexed by ε. For instance, the net worth multiplier is
now given by vi(X, s; ε). We are interested in the expansion of vi(X, s; ε) on ε, for ε small:

vi(X, s; ε) = v∗i (X, s) + v̂i(X, s)ε +O(ε2), (O2.3)

where v∗i (X, s) ≡ vi(X, s; 0) and v̂i(X, s) represents the first-order correction of vi(X, s; ε)

in ε.
Similarly, we can write the consumption-wealth ratio ci(X, s; ε) as follows:

ci(X, s; ε) = c∗i (X, s) + ĉi(X, s)ε +O(ε2), (O2.4)

and analogously for the remaining equilibrium variables.
The functions v∗i (X, s) and c∗i (X, s) are already known, as they correspond to the solu-

tion of the case with homogeneous beliefs and iid returns, which we characterized above.
It remains to solve for v̂i(X, s), ĉi(X, s), and the first-order correction for the other vari-
ables.

We start by providing a characterization of the households’ problem in this general
economy.

Proposition O.4. Suppose that pi
ss′ = p∗s′ + δi

ss′ε, α = α̂ε, and ξ = ξ̂ε. Suppose also that
β∗ < 1. Then,

i. Net-worth multiplier:

v̂i(X, s)
v∗i (X, s)

= β∗ ∑
s′∈S

ω∗s′

[
1

1− γ

δi
ss′

p∗s′
− Λ̂(X, s, s′)

Λ∗(X, s, s′)

]
+ β∗v, (O2.5)
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where ω∗s′ ≡
p∗s′ x

1−γ

s′

∑s̃∈S p∗s̃ x1−γ
s̃

,X∗ = (E∗, {ηi}I
i=1), and

v ≡ β∗

1− β∗ ∑
s̃∈S

ω∗s̃ ∑
s̃′∈S

ω∗s̃′

[
1

1− γ

δi
s̃s̃′

p∗s̃′
− Λ̂(X∗, s̃, s̃′)

Λ∗(X∗, s̃, s̃′)

]
. (O2.6)

ii. Consumption-wealth ratio:

ĉi(X, s)
c∗(X, s)

= (1− ψ)
v̂i(X, s)
v̂∗(X, s)

. (O2.7)

iii. Portfolio return:
R̂n,i(X, s, s′)
R∗p(X, s, s′)

=
1
γ

myopic +
1− γ

γ
hedging, (O2.8)

where

myopic =

[
δi

ss′

p∗s′
− ∑

s̃′∈S
ω∗s̃′

δi
ss̃′

p∗s̃′

]
− Λ̂(X, s, s′)

Λ∗(X, s, s′)
(O2.9)

hedging =

[
v̂i(X∗, s′)
v∗(X, s)

− ∑
s̃∈S

ω∗s̃
v̂i(X∗, s̃)
v∗(X, s)

]
+ ∑

s̃∈S
ω∗s̃

Λ̂(X, s, s̃)
Λ∗(X, s, s̃)

. (O2.10)

Proof. See Online Appendix O3.4.

Proposition O.4 provides asymptotic closed-form solutions to the value function and
policy functions. The net-worth multiplier v̂i(X, s) is high when investor i is relatively
optimistic and state-prices are relatively low. The effect of beliefs can be seen by writing
the term involving δi

ss′ as follows:

∑
s′∈S

ω∗s′
1

1− γ

δi
ss′

p∗s′
= ∑

s′∈S
p∗s′

1
1− γ

x1−γ
s′

E∗[x1−γ
s′ ]

δi
ss′

p∗s′
= Cov∗

(
1

1− γ

x1−γ
s′

E∗[x1−γ
s′ ]

,
δi

ss′

p∗s′

)
, (O2.11)

using the fact that ∑s′∈S p∗s′
δi

ss′
p∗

s′
= 0. The covariance above will be positive when δi

ss′ is
on average positive when xs′ is high, i.e. the covariance is increasing in how optimistic
investor i is.

The term involving Λ̂(X, s, s′) captures the effect of changes in the SDF on the portfolio
return that can be achieved by the household:

1 = Es
[
Λ(X, s, s′; ε)Ri,n(X, s, s′; ε)

]
⇒ ∑

s′∈S
ω∗s′

R̂i,n(X, s, s′)
R∗i,n(X, s, s′)

= − ∑
s′∈S

ω∗s′
Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O2.12)
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Hence, if ∑s′∈S ω∗s′
Λ̂(X,s,s′)
Λ∗(X,s,s′) is negative, then the household is able to achieve higher weighted

portfolio returns in the ε > 0 economy.

Given v̂i(X, s), we can characterize the policy functions. The consumption-wealth ratio ĉi(X, s)
is proportional to v̂i(X, s). If ψ > 1, such that the substitution effect on savings dominates, house-

holds save a larger fraction of their wealth when average portfolio returns are high.

As in the continuous-time model of Merton (1992), portfolio returns have two components:

the myopic demand and the hedging demand. The myopic demand depends on current market con-

ditions, while the hedging demand depends on future expected returns as captured by v̂i(X∗, s′).
We consider next the labor market outcomes and firms’ profits.

Proposition O.5 (Hours, wages, and profits). Suppose that pi
ss′ = p∗s′ + δi

ss′ε, α = α̂ε, and ξ = ξ̂ε.
Suppose also that β∗ < 1. Then,

i. Wages:

ŵ(E) = ξ̂

(
α̂E
ξ̂

) ν
1+ν

. (O2.13)

ii. Hours:

ĥ(E) =
(

α̂E
ξ̂

) 1
1+ν log

(
α̂E
ξ̂

)
(1 + ν)2 α̂. (O2.14)

iii. Profits:

π̂(X, s) =

[
xs

log
(
α̂E/ξ̂

)
1 + ν

− E

]
α̂. (O2.15)

Proof. See Online Appendix O3.5

We consider next the behavior of the price of the surplus claim and the riskless asset.

Proposition O.6 (Asset Prices). Suppose that pi
ss′ = p∗s′ + δi

ss′ε, α = α̂ε, and ξ = ξ̂ε. Suppose also that
β∗ < 1. Then,

i. Price of surplus claim:

P̂(X, s)
P∗(X, s)

=

[
log(α̂E/ξ̂)− E

xs

]
α̂

1 + ν
+ (ψ− 1)

I

∑
i=1

ηi
v̂i(X, s)
v∗(X, s)

. (O2.16)

ii. Return on the surplus claim:

R̂p(X, s, s′)
R∗p(X, s, s′)

=

[
log

E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
+ (ψ− 1)

I

∑
i=1

ηi

[
v̂i(X∗, s′)
v∗(X∗, s′)

− 1
β∗

v̂i(X, s)
v∗(X, s)

]
.

(O2.17)

iii. Risk-free rate:
R̂b(X, s)
R∗b(X, s)

= − ∑
s′∈S

ps′x
−γ
s′

E∗[x−γ
s′ ]

Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O2.18)
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iv. Conditional risk premium:

R̂E(X, s)
R∗E(X, s)

= ∑
s′∈S

p∗s′xs′

E∗[xs′ ]

R̂E(X, s, s′)
R∗E(X, s, s′)

− R̂b(X, s)
R∗b(X, s)

, (O2.19)

where RE(X, s; ε) = E∗
[

RE(X,s,s′;ε)
Rb(X,s;ε)

]
.

Proof. See Online Appendix O3.6

The next proposition provides the law of motion of the aggregate state variables.

Proposition O.7 (Aggregate state variables.). Suppose that pi
ss′ = p∗s′ + δi

ss′ε, α = α̂ε, and ξ = ξ̂ε.
Suppose also that β∗ < 1. Then,

i. Wealth distribution:

η̂′i(X, s, s′)
ηi

=
R̂i,n(X, s, s′)
R∗i,n(X, s, s′)

−
I

∑
j=1

ηi
R̂j,n(X, s, s′)
R∗j,n(X, s, s′)

− ((β∗)−1− 1)

(
ĉi(X, s)
c∗i (X, s)

−
I

∑
j=1

ηj
ĉj(X, s)
c∗j (X, s)

)
+ κ

µi − ηi

ηi
.

(O2.20)

ii. Risk-neutral expectation of productivity growth:

Ê′(X, s)
E∗

=
R̂b(X, s)
R∗b(X, s)

+ ∑
s′∈S

ω∗s′
Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O2.21)

Proof. See Online Appendix O3.7.

Propositions O.4 to O.7 characterize the behavior of all equilibrium objects given the econ-

omy’s SDF Λ̂(X, s, s′). The next proposition provides an expression for Λ(X, s, s′) in terms of the

primitives of the economy.

Proposition O.8 (The economy’s SDF). Suppose that pi
ss′ = p∗s′ + δi

ss′ε, α = α̂ε, and ξ = ξ̂ε. Suppose
also that β∗ < 1. Then, the economy’s SDF is given by

Λ̂(X, s, s′)
Λ∗(X, s, s′)

= γbΛ(X, s, s′)− (γ−ψ−1)

[
ω∗bΛ(X, s)− β∗ω∗ · bΛ(X∗, s′) + β∗ ∑̃

s∈S
ωs̃(ω

∗ · bΛ(X∗, s̃))

]
,

(O2.22)
where

bΛ(X, s, s′) =
1
γ

δss′(X)

p∗s′
− ψ− γ−1

γ− 1

[
ω∗ · δs(X)− β∗ω∗ · δs′(X) + β∗ ∑̃

s
ω∗s̃ (ω

∗ · δs̃(X))

]
−
[

log
E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
.

(O2.23)

Proof. See Online Appendix O3.8.

A particularly simple special case is given by the case of CRRA preferences, i.e. γ = ψ−1.
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Corollary 6. Suppose γ = ψ−1. Then,

i. SDF:
Λ̂(X, s, s′)
Λ∗(X, s, s′)

=
δss′(X)

p∗s′
− γ

[
log

E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
. (O2.24)

O2.2 Special cases

Consider the special case where δi
ss′ = 0 for all i ∈ I and s, s′ ∈ S . In this case, investors still have

common iid beliefs, but returns will not be iid due to the fact that labor is chosen one period in

advance.

In this case, the economy’s is given by

Λ̂(X, s, s′)
Λ∗(X, s, s′)

= ψ−1
[

log
E
E∗

+
E∗

xs′
− E

xs

]
α̂

1 + ν
− (γ− ψ−1)(1− β∗) ∑̃

s′
ω∗s̃′

(
E∗

xs̃′
− E∗

xs′

)
α̂

1 + ν
.

(O2.25)

The interest rate is given by

R̂b(X, s)
R∗b(X, s)

= − ∑
s′∈S

ps′x
−γ
s′

E∗[x−γ
s′ ]

Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O2.26)

O2.3 Conditional moments

Consider the conditional risk premium

Re
p(X, s; ε) ≡ ∑

s′∈S
p∗s′

Rp(X, s, s′; ε)

Rb(X, s; ε)
. (O2.27)

Expanding the expression above in ε, we obtain

R̂e
p(X, s)
Re,∗

p
= ∑

s′∈S

p∗s′R
∗
p(X, s, s′)

∑s̃′∈S p∗s̃′R
∗
p(X, s, s̃′)

[
R̂p(X, s, s′)
R∗p(X, s, s′)

− R̂b(X, s)
R∗b(X, s)

]
= ∑

s′∈S

ps′xs′

E∗[xs′ ]

R̂p(X, s, s′)
R∗p(X, s)

− R̂b(X, s, s′)
R∗b(X, s)

.

(O2.28)

The conditional volatility of excess returns is given by

σp(X, s; ε) ≡
[

∑
s′∈S

ps′
(

Re
p(X, s, s′; ε)− Re

p(X, s; ε)
)2
] 1

2

. (O2.29)

Expanding the expression above in ε, we obtain

σ̂p(X, s)
σ∗p (X, s)

=
1

σ∗p (X, s)2 ∑
s′∈S

ps′
(

Re,∗
p (X, s, s′)− Re,∗

p (X, s)
) (

R̂e
p(X, s, s′)− R̂e

p(X, s)
)

, (O2.30)

where R̂e
p(X, s, s′) = R̂e,∗

p (X, s, s′)
(

R̂p(X,s,s′)
R∗p(X,s,s′) −

R̂b(X,s)
R∗b (X,s)

)
.
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O2.4 Stock prices in the log economy

Suppose ψ = γ = 1 and that investors have homogeneous iid beliefs, δi
ss′ = 0. The stock price

satisfies the following recursion:

Q(X, s) = ∑
s′∈S

pss′Λ(X, s, s′)
[
π(E′(X, s), s′) + xs′Q(X′, s′)

]
, (O2.31)

where π(E, s) =
(

αE
ξ

) α
1+ν−α xs

[
1− α

xs
E
]

and pss′Λ(X, s, s′) = pss′(X) β
xs′

(
E

E′(X,s)

) α
1+ν−α 1+ν−α E

xs

1+ν−α
E′(X,s)

xs′

.

Define the price-dividend ratio q(X, s) = xs
Q(X,s)
π(X,s) . The price-dividend ratio satisfies the recur-

sion:

q(X, s) = ∑
s′∈S

pss′Λ(X, s, s′)
[
π(E′(X, s), s′) + xs′Q(X′, s′)

]
, (O2.32)

We can then write the expression above as follows:

q(X, s) = β ∑
s′∈S

pss′(X)
1 + ν− α E

xs

1 + ν− α E′(X,s)
xs′

1− α E′(X,s)
xs′

1− α E
xs

[
1 + q(X′, s′)

]
. (O2.33)

Let’s assume that ν = νε. We can then write q(X, s; ε) as follows

q(X, s; ε) =
∞

∑
k=0

qk(X, s)εk. (O2.34)

Define g(X, s, s′; ε) ≡ 1+ν−α E
xs

1+ν−α
E′(X,s)

xs′

1−α
E′(X,s)

xs′
1−α E

xs
. We can expand g(X, s, s′) as follows

g(X, s, s′; ε) =
∞

∑
k=0

gk(X, s, s′)εk, (O2.35)

where g0(X, s, s′) = 1 and, for k > 0, we obtain

gk(X, s, s′) =
ανk

(
E′(X,s)

xs′
− E

xs

)
(

1− α E
xs

) (
α E′(X,s′)

xs′
− 1
)k (O2.36)

This gives the following recursion for qk(X, s):

qk(X, s) = β ∑
s′∈S

pss′(X)

[
gk(X, s) +

k

∑
j=0

gj(X, s)qk−j(X′, s′)

]
. (O2.37)

Under our assumptions, the risk-neutral expectation of productivity growth is constant
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E′(X, s) = E. In this case, we can write the recursion

Q(X, s) = β

(
1− α

1 + ν

E
xs

)
∑

s′∈S

p∗s′xs′

xs′ − α
1+ν E

[
Q(X, s′) +

(
αE
ξ

) α
1+ν−α

(
1− α

E
xs′

)]

Let Q̃(X, s) ≡ Q(x,s)

1− α
1+ν

E′(X,s)
xs

, Q̃(X) ≡ [Q̃(X, 1), . . . , Q̃(X, N)]′, and bQ ≡

β
(

αE
ξ

) α
1+ν−α

∑s′∈S p∗s′
xs′−αE

xs′− α
1+ν E

. Then, we can write

[
I − β1N(p∗)′

]
Q̃(X) = bQ1N , (O2.38)

Inverting the matrix above, we obtain

Q(X, s) =

[
β

1− β

(
αE
ξ

) α
1+ν−α

∑
s′∈S

p∗s′
xs′ − αE

xs′ − α
1+ν E

](
1− α

1 + ν

E
xs

)
. (O2.39)

The price-dividend ratio is given by

xsQ(X, s)
π(X, s)

=
β

1− β ∑
s′∈S

p∗s′
xs′ − αE

xs′ − α
1+ν E

xs − α
1+ν E

xs − αE
. (O2.40)

Equity returns are given by

RE(X, s, s′) =
π(E, s′) + x′Q(X, s′)

Q(X, s)
=

xs′

β

 1− β

∑s′∈S p∗s′
xs′−αE

xs′− α
1+ν E

1− α E
xs′

1− α
1+ν

E
xs

+ β
1− α

1+ν
E

xs′

1− α
1+ν

E
xs

 . (O2.41)

Excess returns are given by

Re
E(X, s, s′) = aExs′ + bE, (O2.42)

where

aE ≡
1(

1− α
1+ν

)
E

 1− β

∑s′∈S p∗s′
xs′−αE

xs′− α
1+ν E

+ β

 (O2.43)

bE ≡ (O2.44)

The conditional risk premium is given by

RE(X, s) =
1(

1− α
1+ν

)
E


 1− β

∑s′∈S p∗s′
xs′−αE

xs′− α
1+ν E

+ β

E[xs′ ]−

 (1− β)(1 + ν)

∑s′∈S p∗s′
xs′−αE

xs′− α
1+ν E

+ β

 α

1 + ν
E

− 1.

(O2.45)
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We can write the expression above as follows:

RE(X, s) =
1(

1− α
1+ν

)
E


 1− β

1− ν ∑s′∈S
p∗s′

α
1+ν E

xs′− α
1+ν E

+ β

E[xs′ ]−

 (1− β)(1 + ν)

1− ν ∑s′∈S
p∗s′

α
1+ν E

xs′− α
1+ν E

+ β

 α

1 + ν
E

− 1.

(O2.46)

O2.5 Quantitative implications

Let zt denote demeaned log productivity growth, which we assume follows an AR(1) process:

zt+1 = ρzt + σ
√

1− ρ2εt+1, (O2.47)

where εt+1 follows a standard normal distribution and it is serially uncorrelated. In levels, the

(gross) productivity growth is given by xt = eµ+zt , where µ denotes average productivity growth.

We discretize the process above following the method of Rouwenhurst (1995). Let ẑt denote

the discretized variable taking values in the equally-spaced grid {z1, . . . , zN}, where zi = −ψ +
2ψ

N−1 (i − 1), so z1 = −ψ and zN = ψ. We set ψ ≡ σ
√

N − 1, so we match the unconditional

variance.

O2.6 A more general process for productivity growth

Discretization. The evolution of x̂t, under subjective beliefs, can be written in a convenient

matrix form: [
x̂t+1

ẑi,t+1

]
=

[
wt+1

0

]
+

[
θi 1

0 0

] [
x̂t

ẑi,t

]
+

[
σi,u 0

0 σv

] [
ui,t+1

vt+1

]
, (O2.48)

where ẑi,t ≡ Ei,t[x̂t+1] − θi x̂t. We recover objective beliefs in the special case θi = σv = 0.

As wt+1 follows a Markov chain, the process above corresponds to a Markov-switching vec-

tor autoregression (MS-VAR), with state-dependent conditional means. To discretize the sys-

tem above, we adapt the methods of Gospodinov and Lkhagvasuren (2014), who extended the

Rouwenhurst (1995) method to VARs, and Liu (2017), who proposed a discretization of univariate

Markov-Switching models. The discretization provides a state space with dimension S for xt, so

xt ∈ X = {x1, x2, . . . , xS}, and transition probabilities {pi
ss′}, for s, s′ ∈ S = {1, 2, . . . , S}, that ap-

proximate the MS-VAR (O2.48). Notice that our discretization implies that the grid X is the same

for all investors, so they agree on the state s, but they disagree on the transition probabilities pi
ss′ .

Let x̂t ≡ log xt − µ denote the demeaned log productivity growth. We assume that investor i
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believes the process for x̂t is given by

x̂t+1 = Ei,t[x̂t+1] + σi,uui,t+1 (O2.49)

Ei,t[x̂t+1] = θi x̂t + σvvi,t, (O2.50)

vi,t = vt + ṽi,t, where ui,t and vt are mutually independent, serially uncorrelated, standard normal

random variables. Notice that ui,t+1 represents the period t + 1 innovation according to investor

i and vt represents an expectation shock. We assume that this expectation shock is common across

investors, so heterogeneity comes only from θi.

The presence of this expectation shock is important to quantitatively match the volatility of

expectations in the data. To see the role of vt, notice that the unconditional variance of x̂t+1 and

Et[x̂t+1] are given by

Var[x̂t+1] =
σ2

i,u + σ2
v

1− θ2
i

, Var[Et[x̂t+1]] =
θ2

i σ2
i,u + σ2

v

1− θ2
i

. (O2.51)

The fraction of total variance explained by movements in expectations is given by

Var[Et[x̂t+1]]

Var[x̂t+1]
= θ2

i + (1− θ2
i )

σ2
v

σ2
i,u + σ2

v
. (O2.52)

Hence, by adjusting σv, it is possible to obtain any value in the interval [θ2
i , 1) for the fraction of

variance explained by movements in expectations. In the special case σv = 0, we obtain an AR(1)

process for x̂t+1, which achieves the lower bound of this interval.

Discretization. We discretize the process above using the generalization of the method of

Rouwenhurst (1995) proposed by Gospodinov and Lkhagvasuren (2014). The method consists

of mixing the distribution for independent AR(1) processes to approximate the distribution of a

VAR(1) with uncorrelated shocks. Define ẑt ≡ Ei,t[x̂i,t]− θi x̂t, so we can write the system above in

matrix form: [
x̂t+1

ẑt+1

]
=

[
θ 1

0 0

] [
x̂t

ẑt

]
+

[
σu 0

0 σv

] [
ut+1

vt+1

]
, (O2.53)

where we dropped the dependence on the investor i to ease notation. Given this representation,

we can construct the discrete approximation following the three steps described below.

Step 1: grid construction. We construct the grids for x̂ and ẑ as in Rouwenhurst (1995). Let

x̂(Nx, σx) = {x1, x2, . . . , xNx} denote the grid for x̂, where

x̂i = −ψx(Nx, σx) + 2ψx(Nx, σx)
i− 1

Nx − 1
, (O2.54)

ψx(Nx, σx) ≡ σx
√

Nx − 1, and σx denotes the unconditional standard-deviation for x̂t. Notice that
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the grid is equally spaced, x1 = −ψx(Nx, σx), and xNx = ψx(Nx, σx). The grid for ẑ is constructed

analogously.

Step 2: transition matrix for independent AR(1). Let Π(N, ρ, σ) denote the N × N transition ma-

trix for the Rouwenhurst (1995) approximation of an AR(1) process with autocorrelation ρ and

unconditional variance σ2. We denote the k-th row of this matrix by

πk(N, ρ, σ) = {πk,1(N, ρ, σ), πk,2(N, ρ, σ), . . . , πk,N(N, ρ, σ)}, (O2.55)

where πk,l(N, ρ, σ) is the probability of transitioning from state k to state l. In the special case

where ρ = 0, the transition probability is independent of the current state, so we can write

πk,j(N, 0, σ) = π j(N, σ).

Step 3: Markov chain construction. Given Nx points in the grid for x̂ and Nz points in the grid

for ẑt, we have a total of S = Nx × Nz states. Denote the state space by S = {1, 2, . . . , S}. Let

s = i + (k − 1) × Nx and s′ = j + (l − 1) × Nx, where i, j ∈ {1, . . . , Nx} and k, l ∈ {1, . . . , Nz}.
Denote the probability of x̂t+1 = xj given state s by px

s (j) and the probability of ẑt+1 = zl given

state s by pz
s(l). As x̂t+1 and ẑt+1 are conditionally independent, the probability of switching from

state s to state s′ is given by

pss′ = px
s (j)× pz

s(l). (O2.56)

As z is serially uncorrelated, we have that pz
s(l) = πl(Nz, σz). The transition probability for x̂t

will be obtained by appropriately mixing the distribution of an AR(1) process with autocorrelation

ρx ≡
√

1− σ2
u

σ2
x

and unconditional variance σ2
x .

Let µx(s) ≡ θx̂i + ẑk denote the conditional expectation of x̂ at state s. Suppose first that

µx(s) ∈ [ρxx1, ρxxNx ]. Define the probability of x̂t+1 = xj given state s as follows:

px
s (j) = λ(ρx)πι,j(Nx, ρx, σx) + (1− λ(ρx))πι+1,j(Nx, ρx, σx), (O2.57)

where ι is such that ρxxι ≤ µx(s) ≤ ρxxι+1 and λ(ρx) ≡ ρxxι+1−µx(s)
ρxxι+1−ρxxι .

This choice of λ(ρx) implies that we match the conditional moments:

Nx

∑
j=1

px
s (j)xj = λ(ρx)ρxxι + (1− λ(ρx))ρxxι+1 = µx(s). (O2.58)

The conditional second moment is given by

Nx

∑
j=1

px
s (j)(xj)2 = σ2

x(1− ρ2
x) + ρ2

x

[
λ(ρx)(yι)2 + (1− λ(ρx))(yι+1)2

]
. (O2.59)
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Denote the conditional variance of the discrete process by σ̃2
u , which is given by

σ̃2
u = σ2

x(1− ρ2
x) + ρ2

x

[
λ(ρx)(yι)2 + (1− λ(ρx))(yι+1)2

]
− ρ2

x

[
λ(ρx)yι + (1− λ(ρx))yι+1

]2

= σ2
x(1− ρ2

x) + ρ2
xλ(ρx)(1− λ(ρx))(xι+1 − xι)2

= σ2
x(1− ρ2

x) + σ2
x ρ2

x
4λ(ρx)(1− λ(ρx))

Nx − 1
, (O2.60)

using the fact that (xi+1 − xi)2 = 4σ2
x

N−1 . As Nx → ∞, the second term on the right converges to

zero and σ̃u = σ2
x(1− ρ2

x) = σ2
u , given our choice of ρx. If µx(s)/ρx does not belongs to the grid

of x̂, then the discretization matches the conditional mean of x̂, but it overstates the conditional

variance.

Suppose now that µx(s) /∈ [ρxx1, ρxxNx ]. In this case, we set px
s (j) = π1,j(Nx, ρx, σx) if µx(s) <

ρxx1 and px
s (j) = πNx ,j(Nx, ρx, σx) if µx(s) > ρxxNx . In both cases, the conditional variance is

matched exactly and the conditional mean achieves the value closest to µx(s) given the grid points.

A different representation. An equivalent representation of the system is given by

x̂t+1 = zt + σuut+1 (O2.61)

zt+1 = θizt + θiσuut+1 + σvvt+1, (O2.62)

where zt ≡ Ei,t[x̂t+1]. Hence, expected growth follows an AR(1) process and it is exposed to

both expectation shocks, vt+1, and shocks to realized growth rates, ut+1. Notice that we cannot

independently choose the persistence of expectations and the correlation between zt+1 and x̂t+1.

The impact of vt in expected future growth is

∂Et[x̂t+k]

∂vt
= σvθk−1

i , (O2.63)

for k ≥ 1.

O2.7 A process with richer heterogeneity

Under the objective measure, log productivity follows a Markov-Switching process:

log(xt+1) = µt+1 + θ(log(xt)− µt) + ut+1, (O2.64)

where ut+1 ∼ N (0, σ2
u) and µt+1 follows a two-state Markov chain, that is, µt+1 ∈ {µ1, µ2} and

Pr(µt+1 = µj|µt = µi) = pµ
ij for i, j ∈ {1, 2}. The different regimes enable us to capture the fact that

productivity is subject to small fluctuations most of the time with occasional rare large shocks.
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Under subjective beliefs, productivity follows the process

log(xt+1) = µt+1 + θi(log(xt)− µt) + vi,t + ui,t+1, (O2.65)

where ui,t+1 ∼ N (0, σ2
i,u), vi,t = ρσi,vvt +

√
1− ρ2σi,vv̂i,t, and (vt, vi,t) are iid standard normal

random variables. We assume that (ui,t, v̂i,t, vt) are mutually independent.

Subjective beliefs differ from the objective one in two important dimensions. First, the persis-

tent parameter θi may differ from the objective one θ. Second, subjective beliefs are exposed to

expectation shocks vi,t. These expectations shocks are exposed to a common component vt and

an investor-specific component vi,t. Differences in θi capture the fact that investors differ on how

they react to news, with some investors extrapolating and some investors under-reacting. The

expectation shocks vi,t are important to capture the volatility of subjective expectations observed

in the data.

Define x̂t ≡ log(xt)− µt and the vector v̂t = [v̂1,t, . . . , v̂I,t]
′. Investor i believes that [x̂t, vt, v̂t]

follows the process:

x̂t+1

vt+1

v̂t+1

 =

 θi ρσi,v
√

1− ρ2σi,ve′i
0 0 01×I

0I×1 0I×1 0I×I


x̂t

vt

v̂t

+

ui,t+1

vt+1

v̂t+1

 (O2.66)

Notice that the total variance and the variance of the conditional expectation are given by

Var[x̂t+1] =
σ2

i,u + σ2
i,v

1− θ2
i

, Var[Et[x̂t+1]] =
θ2

i σ2
i,u + σ2

i,v

1− θ2
i

. (O2.67)

The fraction of total variance explained by movements in expectations is given by

Var[Et[x̂t+1]]

Var[x̂t+1]
= θ2

i + (1− θ2
i )

σ2
i,v

σ2
i,u + σ2

i,v
. (O2.68)

O2.8 A more general process for productivity growth

Let x̂t ≡ log xt − µ denote the demeaned log productivity growth. We assume that x̂t follows the

process:

x̂t+1 = zt + σx

[√
1− ρ2

xzut+1 + ρxzvt+1

]
(O2.69)

zt+1 = θzzt + σzvt+1, (O2.70)

where ut and vt are standard normal random variables, serially uncorrelated, and uncorrelated

with each other. Notice that Et[xt+1] = zt, so zt corresponds to expected productivity growth. The

disturbance vt+1 can then be interpreted as expectations shocks. These expectations shocks are
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potentially correlated with cash-flow shocks, with correlation coefficient ρxz. In the long-run risk

literature, vt+1 is referred to as a long-run risk shock, while ut+1 corresponds to a short-run risk

shock.

The ARMA(1,1) case. Suppose ρxz = 1. This implies that the process for x̂t specializes to

x̂t+1 = θz x̂t + σxvt+1 − (θzσx − σz)vt, (O2.71)

which is an ARMA(1,1) process. If we further assume that σz = θzσx, then we obtain an AR(1)

process.

Notice that we can write the conditional expectation of xt+1 as follows

Et[xt+1] = θz x̂t − b
x̂t −Et−1[xt]

σx
⇒ Et[xt+1] =

θz − b/σx

1− bL
x̂t. (O2.72)

where b ≡ θzσx − σz and L is the lag operator.

Define ŵt as follows

ŵt ≡
x̂t

1− bL
=

∞

∑
j=1

bj x̂t−j. (O2.73)

Unconditional moments. The unconditional variance of zt+1 is given by

Var[zt+1] =
σ2

z
1− θ2

z
, (O2.74)

and the unconditional variance of x̂t+1 is given by

Var[x̂t+1] = E [Vart[x̂t+1]] + Var[Et[x̂t+1]] = σ2
x +

σ2
z

1− θ2
z

. (O2.75)

In this general case, we can choose θz and σz to match the persistence and variance of expecta-

tions and choose σ2
x to match the unconditional variance of productivity growth. The parameter

ρxz controls the correlation between expected and realized productivity growth.

In the special case ρxz = 1 and σz = θzσx. This allows us to match the persistence of expec-

tations and either the unconditional variance of expected productivity growth or unconditional

variance of realized productivity growth.

If σz = θzσx, then

Var[zt+1] = θ2
z

σ2
x

1− θ2
z
= θ2

z Var[xt+1]. (O2.76)
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Discretization of the productivity growth process. Using the process for zt+1 to eliminate

vt+1 from the expression for x̂t, we obtain

x̂t+1 = θ−1
z zt+1 +

(
ρxzσx

σz
− 1

θz

)
(zt+1 − θzzt) + σx

√
1− ρ2

xzut+1. (O2.77)

Given zt, zt+1, and ut+1, this allow us to solve for x̂t+1. Suppose zt takes on Nz discrete values

and ut takes on Nu values. This implies that x̂t can take on N ≡ N2
z × Nu values. If we impose

the constraint ρxz = 1, then x̂t+1 is independent of ut+1, so x̂t takes on N2
z possible values. If we

further assume that σz = θzσx, then x̂t can take only Nz values.

The current value of x̂ is determined by (zt−1, zt, ut) = (zi, zj, uk), where i, j ∈ {1, . . . , Nz} and

k ∈ {1, . . . , Nu}. We can define the current state as a function of (i, j, k): s = i + (j− 1)Nz + (k−
1)N2

z . The transition matrix is then given by

Pr(s′ = i′+ (j′− 1)Nz + (k′− 1)N2
z |s) =

{
Pr(z′ = zj′ |z = zj)Pr(u′ = uk), if i′ = j

0, if i′ 6= j
, (O2.78)

where s = i + (j− 1)Nz + (k− 1)N2
z .

We can write the system above in matrix form:[
x̂t+1

zt+1

]
=

[
0 1

0 θz

] [
x̂t

zt

]
+

[
σx 0

ρxzσz
√

1− ρ2
xzσz

] [
ut+1

vt+1

]
. (O2.79)

Notice that the spectral decomposition of the matrix of coefficients is given by[
0 1

0 θz

]
=

[
1 1

θz 0

] [
θz 0

0 0

] [
0 θ−1

z

1 −θ−1
z

]
. (O2.80)

Define the following transformed variables:[
w1,t

w2,t

]
≡
[

0 θ−1
z

1 −θ−1
z

] [
xt − µ

zt

]
. (O2.81)

The difference equation for wt is given by[
w1,t+1

w2,t+1

]
=

[
θz 0

0 0

] [
w1,t

w2,t

]
+

[
ρxz

σz
θz

√
1− ρ2

xz
σz
θz

σx − ρxz
σz
θz
−
√

1− ρ2
xz

σz
θz

] [
ut+1

vt+1

]
. (O2.82)

We can write the original variables in terms of w1,t and w2,t:

log xt = µ + w1,t + w2,t, zt = θzw1,t (O2.83)
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We can then discretize w1,t and w2,t.

w2,t+1 =
√

1− ρ2
xzσxut+1 + (ρxzσx − σzθ−1

z )vt+1 (O2.84)

w1,t+1 = θzw1,t + σzθ−1
z ut+1 (O2.85)

xt+1 = µ + w1,t+1 +
√

1− ρ2
xzσx(w1,t+1 − θzw1,t)

θz

σz
+ (ρxzσx − σzθ−1

z )vt+1. (O2.86)

O3 Proofs

O3.1 Proof of Proposition O.1

Proof. We provide the characterization of the economy with N-possible states in steps, proceeding

from the households’ problem to the market clearing conditions.

Step 1: households’ problem. Household i chooses consumption Ci, hours hi, and arrow

securities Bi(X, s, s′) to maximize (3) subject to the budget constraint:

Ci + Es[Λ(X, s, s′)Bi(X, s, s′)] = Bi + Whi, (O3.1)

and an appropriate No-Ponzi condition.

As in the two-state case, it is useful to transform this budget constraint in terms of net con-

sumption and total wealth:

C̃i + Es

[
Λ′
(

B′i + W ′h′i − ξ ′
(h′i)

1+ν

1 + ν
+H′i

)]
= Bi + Whi − ξ

h1+ν
i

1 + ν
+Hi ≡ Ni, (O3.2)

where we used the fact thatHi = Es

[
Λ′
(

W ′h′i − ξ ′
(h′i)

1+ν

1+ν +H′i
)]

and C̃i = Ci − ξ
h1+ν

i
1+ν .

We can then write the budget constraint above as follows

C̃i + Es
[
Λ′N′i

]
= Ni. (O3.3)

The household’s problem can then be equivalently expressed as choosing

(C̃i(N, X, s), N′i (N, X, s, s′)) to maximize (3) subject to the constraint above and the natural

borrowing limit N′i (N, X, s, s′) ≥ 0. The solution takes the form in Equation (12). It will be useful

to define the consumption-wealth ratio ci ≡ C̃i
N and the normalized net worth n′i ≡

N′i
Ni

. Define the

portfolio return as Ri,n(X, s, s′) ≡ n′i(X,s,s′)
1−ci(X,s) , which gives the budget constraint n′ = R′i,n(1− c). The
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function vi(X, s) must then satisfy the condition

(vi(X, s)N)1−ψ−1 − 1
1− ψ−1 = max

ci ,n′i
(1− β)

(ciN)1−ψ−1 − 1
1− ψ−1 + β

Ei
[
(vi(X′, s′)n′N)1−γ

] 1−ψ−1
1−γ − 1

1− ψ−1 , (O3.4)

subject to n′ = R′n(1− ci), Es[Λ′R′n] = 1, and n′ ≥ 0.

Step 2: optimality conditions. The first-order conditions for the consumption-wealth ratio

and the portfolio share are given by

(1− β)c−ψ−1

i = βRi(X, s)1−ψ−1
(1− ci)

−ψ−1
(O3.5)

pi
ss′vi(X′, s′)1−γR′i,n(X, s, s′)−γ = pss′Λ(X, s, s′)µ(X, s), (O3.6)

whereRi(X, s) = Ei
[
(vi(X′, s′)Ri,n(X, s, s′))1−γ|X, s

] 1
1−γ and µ(X, s) is the (normalized) multiplier

on the constraint on returns. From the first-order condition for consumption, we obtain Equation

(13). The envelope condition is given by

vi(X)1− 1
ψ = (1− β)c

− 1
ψ

i ⇒ vi(X)1−γ = (1− β)θc
− θ

ψ

i . (O3.7)

Notice that the multiplier is given by

µ(X, s) = Ei[(vi(X, s′)R′i,n(X, s, s′))1−γ] = Ri(X, s)1−γ =

(
1− β

β

)θ [ ci

1− ci

]− θ
ψ

. (O3.8)

Combining the previous two expressions above with the first-order condition for R′i,n, we ob-

tain

pss′Λ(X, s, s′) = pi
ss′
(1− β)θ(c′i)

− θ
ψ R′i,n(X, s, s′)−γ(

1−β
β

)θ [ ci
1−ci

]− θ
ψ

(O3.9)

= pi
ss′β

θ

(
c′i N

′

ciN

)− θ
ψ

(R′i,n)
−(1−θ), (O3.10)

≡ pi
ss′Λi(X, s, s′), (O3.11)

using the fact that θ
ψ + 1− θ = γ.

Hence, expressions (13) and (14) hold unchanged with multiple states. Moreover, the change-

of-measure equation Λi(X, s, s′) = pss′
pi

ss′
Λ(X, s, s′) also holds.

Step 3: firms’ problem and labor market outcomes. The firm’s problem is essentially the

same and the first-order condition (19) holds without change. The equations for hours and wages
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(21) are also unchanged.

Step 4: law of motion of aggregate state variables. The aggregate state variables are the

same as before. The law of motion of L is given by

E′(X, s) = ∑
s′∈S

pss′Λ(X, s, s′)
∑s̃∈S pss̃Λ(X, s, s̃)

xs′ , (O3.12)

and the law of motion of ηi is unchanged.

Step 5: market clearing conditions. Notice that ∑I
i=1 µiBi must coincide with the cum-

dividend value of the firm. Hence, ∑I
i=1 µiNi coincides with the cum-dividend value of the surplus

claim, A−P(X, s), where A− denotes lagged productivity.

The market clearing condition for net consumption is then given by

I

∑
i=1

µiNici(X, s) = A−

(
xsh(E)α − ξ

h(E)1+ν

1 + ν

)
. (O3.13)

Using the fact that ∑I
i=1 µiNi = A−P(X, s), we obtain the market clearing for consumption in

Equation (23). The market clearing for Arrow securities is given by

I

∑
i=1

µiNini(X, s, s′) = xs A−P(X′, s′). (O3.14)

We can write the expression above in terms of portfolio returns:

I

∑
i=1

µiNi(1− ci(X, s))

∑I
j=1 µjNj(1− cj(X, s))

Rn,i(X, s, s′) =
xs A−P(X′, s′)

A−
[

P(X, s)−
(

xsh(E)α − ξ h(E)1+ν

1+ν

)] , (O3.15)

using the fact that ∑I
j=1 µjNj(1− cj(X, s)) = A−

[
P(X, s)−

(
xsh(E)α − ξ h(E)1+ν

1+ν

)]
.

We can write the expression above as follows

I

∑
i=1

η̃iRn,i(X, s, s′) = Rp(X, s, s′), (O3.16)

for each s′ ∈ S .

O3.2 Proof of Proposition O.2

Proof. We provide next a characterization of the economy with log-utility and an arbitrary number

of states.
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Step 1: consumption and portfolio decisions. Suppose ψ = γ = 1. This implies that

ci(X, s) = 1− β and that Λi(X, s, s′) = R−1
i,n (X, s, s′). From the change-of-measure equation, we

obtain

R−1
i,n (X, s, s′) =

pss′Λ(X, s, s′)
pi

ss′
⇒ Ri,n(X, s, s′) =

pi
ss′

pss′Λ(X, s, s′)
. (O3.17)

Step 2: the economy’s SDF. Plugging the expression for Ri,n(X, s, s′) into the market clearing

condition for Arrow securities paying off in state s′, we obtain

∑I
i=1 ηi pi

ss′

pss′Λ(X, s, s′)
= Rp(X, s, s′)⇒ Λ(X, s, s′) =

pss′(X)

pss′
R−1

p (X, s, s′). (O3.18)

Notice that the portfolio return for household i is given by

Ri,n(X, s, s′) =
pi

ss′

pss′(X)
Rp(X, s, s′). (O3.19)

Hence, optimistic investors, i.e. investors satisfying pi
ss′ > pss′(X), hold a levered position on the

surplus claim.

Step 3: the surplus claim. From the market clearing condition for goods, we obtain

P(X, s) =
xsh(E)α − ξ h(E)1+ν

1+ν

1− β
. (O3.20)

This implies that the return on the surplus claim is given by

Rp(X, s, s′) =
xsP(X′, s′)

P(X, s)−
(

xsh(E)α − ξ h(E)1+ν

1+ν

) =
xs

β

xs′h(E′(X, s))α − ξ h(E′(X,s))1+ν

1+ν

xsh(E)α − ξ h(E)1+ν

1+ν

. (O3.21)

Using the expression for h(E), we can simplify the expression above

Rp(X, s, s′) =
xs

β

xs′E′(X, s)
α

1+ν−α − α
1+ν E′(X, s)

1+ν
1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

, (O3.22)

which coincides with the expression for the two-type case.

Step 4: interest rate and risk premium. Using the fact that Rb(X, s) is the risk-neutral expec-

tation of Rp(X, s, s′) and E′(X, s) is the risk-neutral expectation of xs′ , we obtain

Rb(X, s) =
(

1− α

1 + ν

)
xs

β

E′(X, s)
1+ν

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

, (O3.23)
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which coincides with the expression for the two-type case.

The expected return on the surplus claim is given by

Es[Rp(X, s, s′)] =
xs

β

Es[xs′ ]E′(X, s)
α

1+ν−α − α
1+ν E′(X, s)

1+ν
1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

. (O3.24)

Taking the difference of the previous two equations, we obtain the risk premium on the surplus

claim:

Es[Re
p(X, s, s′)] =

xs

β

[Es[xs′ ]− E′(X, s)]E′(X, s)
α

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

. (O3.25)

Step 5: law of motion of aggregate state variables. The risk-neutral probability is given by

pss′Λ(X, s, s′)
∑s̃∈S pss̃Λ(X, s, s̃)

=
pss′(X)R−1

p (X, s, s′)

∑s̃∈S pss̃(X)R−1
p (X, s, s̃)

=
pss′(X)

[
xs′ − α

1+ν E′(X, s)
]−1

∑s̃∈S pss̃(X)
[
xs̃ − α

1+ν E′(X, s)
]−1 . (O3.26)

From the law of motion of L, we obtain

E′(X, s) = ∑
s′∈S

xs′
pss′(X)

[
xs′ − α

1+ν E′(X, s)
]−1

∑s̃∈S pss̃(X)
[
xs̃ − α

1+ν E′(X, s)
]−1 . (O3.27)

Rearranging the expression above, we obtain

∑
s′∈S

pss′(X)(xs′ − E′(X, s))
xs′ − α

1+ν E′(X, s)
= 0 (O3.28)

The left-hand side is positive for E′(X, s) = x1, it is negative for E′(X, s) = xN , and it is strictly

decreasing in E′(X, s), assuming the condition xN < x1

α such that the denominator is positive in

the range x1 < E′(X, s) < xN . Therefore, a solution exists and it is unique.

The law of motion of the wealth share is given by

η′i(X, s, s′) =
ηiRi,n(X, s, s′)

∑I
j=1 ηjRj,n(X, s, s′)

= ηi
Ri,n(X, s, s′)
Rp(X, s, s′)

= ηi
pss′

pss′(X)
. (O3.29)

O3.3 Proof of Proposition O.3

Proof. We will construct an equilibrium that has iid returns for any financial asset. We guess-and-

verify that the consumption-wealth ratio and the net-worth multiplier are constant.
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Step 1: consumption and portfolio decisions. Let the consumption-wealth ratio be given

by c∗i (X, s) = 1 − β∗, given a constant β∗ that we need to determine. Given that there is

no heterogeneity in beliefs, we obtain from the market clearing condition for Arrow securities

R∗i,n(X, s, s′) = R∗p(X, s, s′). Plugging c∗i (X, s) and R∗i,n(X, s, s′) into the expression for Λ∗i (X, s, s′),
we obtain

Λ∗i (X, s, s′) = βθ(β∗)−
θ
ψ [R∗p(X, s, s′)]−γ. (O3.30)

Step 2: net-worth multiplier. From the envelope condition, we obtain

v∗i (X, s)1−ψ−1
= (1− β)c∗i (X, s)−ψ−1 ⇒ v∗i (X, s) = (1− β)

1
1−ψ−1 (1− β∗)

− ψ−1

1−ψ−1 . (O3.31)

Step 3: wages, hours, and profits. Using α = α̂ε, ξ = ξ̂ε, and taking the limit of the expres-

sions for wages, hours, and profits as ε → 0, we obtain the expressions provided in the proposi-

tion.

Step 4: The price and return on the surplus claim. For an arbitrary α and ξ, the market

clearing condition for goods implies that

P∗(X, s) =
xsE

α
1+ν−α − α

1+ν E
1+ν

1+ν−α

1− β∗

∣∣∣∣∣
ε=0

=
xs

1− β∗
. (O3.32)

The return on the surplus claim is given by

R∗p(X, s, s′) =
xs

β∗
xs′E′(X, s)

α
1+ν−α − α

1+ν E′(X, s)
1+ν

1+ν−α

xsE
α

1+ν−α − α
1+ν E

1+ν
1+ν−α

∣∣∣∣∣
ε=0

=
xs′

β∗
. (O3.33)

Step 4: The economy’s SDF. From the pricing equation, we obtain

Ei[Λ∗i (X, s, s′)R∗p(X, s, s′)] = 1⇒ βθ(β∗)−θEi[(x′s)
1−γ] = 1 (O3.34)

Rearranging the expression above, we obtain

β∗ = βEi[(x′s)
1−γ]

1−ψ−1
1−γ . (O3.35)

Notice that the condition β∗ < 1 is required to ensure that the consumption-wealth ratio is

positive.

The SDF is then given by

Λ∗(X, s, s′) = βE∗[x1−γ
s′ ]

γ−ψ−1
1−γ (xs′)

−γ, (O3.36)
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using the fact that Λ∗(X, s, s′) = Λ∗i (X, s, s′).

Step 6: Law of motion of aggregate state variables. The risk-neutral probability is given

by
p∗s′Λ

∗(X, s, s′)
∑s̃∈S p∗s̃ Λ∗(X, s, s̃)

=
p∗s′x

−γ
s′

E∗[x−γ
s′ ]

(O3.37)

Hence, E′(X, s) is given by

E′(X, s) =
E∗[x1−γ

s′ ]

E∗[x−γ
s′ ]

. (O3.38)

Step 5: The interest rate and risk premium on surplus claim. The interest rate and risk

premium are given by

R∗b(X, s) =
E′(X, s)

β∗
, Re

p(X, s) =
E∗[xs′ ]− E′(X, s)

β∗
. (O3.39)

Using the expression for β∗ and E′(X, s), we can write the interest rate as follows

R∗b(X, s) = β−1E∗[(x′s)
1−γ]

ψ−1−γ
1−γ E∗[(xs′)

−γ]−1, (O3.40)

The expected return on the surplus claim is given by

E∗
[

R∗p(X, s, s′)
]
= β−1E∗[(x′s)

1−γ]
ψ−1−1

1−γ E∗[xs′ ] (O3.41)

and the risk premium on the surplus claim is given by

E∗
[

R∗p(X, s, s′)
R∗b(X, s)

]
=

E∗[xs′ ]E
∗[x−γ

s′ ]

E∗[x1−γ
s′ ]

(O3.42)

O3.4 Proof of Proposition O.4

Proof. We provide a characterization of the first-order correction for the value function, summa-

rized by the net-worth multiplier vi(X, s; ε), and the policy functions, namely the consumption-

wealth ratio ci(X, s; ε) and the portfolio return Ri,n(X, s, s′; ε), given the expansion for the econ-

omy’s SDF

Λ(X, s, s′; ε) = Λ∗(X, s, s′) + Λ̂(X, s, s′)ε +O(ε), (O3.43)

where Λ̂(X, s, s′) is the first-order correction for the SDF. We take Λ̂(X, s, s′) as given for now and

we will solve for it in a later stage.
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Step 1: value function. The Bellman equation for household i can be written as follows:

vi(X, s; ε)1−ψ−1

1− ψ−1 = (1− β)
c1−ψ−1

i
1− ψ−1 + β

[
∑s′∈S pi

ss′(vi(X′, s′; ε)R′n(1− ci))
1−γ
] 1−ψ−1

1−γ

1− ψ−1 (O3.44)

+ µ(X, s; ε)

[
1− ∑

s′∈S
p∗s′Λ(X, s, s′; ε)R′n

]
,

where X′ = χ(X, s, s′; ε).

Taking the derivative of the expression above with respect to ε and evaluating at ε = 0, we

obtain a condition involving the first-order correction for vi:

(v∗i )
−ψ−1

v̂i(X, s) = β

[
∑

s′∈S
p∗s′(v

∗
i R∗p(s

′)β∗)1−γ

] γ−ψ−1
1−γ

[
∑

s′∈S
δi

ss′
(v∗i R∗p(s′)β∗)1−γ

1− γ
+

∑
s′∈S

p∗s′(v
∗
i )
−γ(R∗p(s

′)β∗)1−γv̂i(X∗, s′)

]
− µ∗(X, s) ∑

s′∈S
p∗s′Λ̂1(X, s, s′)R∗p(s

′),

(O3.45)

where we used the fact that R′n(X, s, s′; 0) = R∗p(X, s, s′), ci(X, s; 0) = 1− β∗. We also used
the fact that χ(X, s, s′; 0) = X∗, where X∗ = (E∗, {ηi}I

i=1) as E′(x, s) = E∗ and the wealth
distribution is constant in the benchmark economy.

Using the results for the benchmark economy, we can simplify the expression above:

v̂i(X, s) = β

[
∑

s′∈S
p∗s′x

1−γ
s′

] γ−ψ−1
1−γ

[
v∗i ∑

s′∈S
δi

ss′
x1−γ

s′

1− γ
+ ∑

s′∈S
p∗s′x

1−γ
s′ v̂i(X∗, s′)

]
− µ∗(X, s)(v∗i )

ψ−1
∑

s′∈S
p∗s′Λ̂1(X, s, s′)Rp(s′), (O3.46)

where we used the fact that v∗(X, s) is constant and R∗p(s′)β∗ = xs′ .
Let’s solve for µ∗(X, s) next. The first-order condition for Rn(X, s, s′; ε) is given by

β

[
∑

s′∈S
pi

ss′(vi(X′, s′; ε)R′n(1− ci))
1−γ

] γ−ψ−1
1−γ

pss′(vi(X′, s′)(1− ci))
1−γRn(X, s, s′)−γ = µ(X, s; ε)p∗s′Λ(X, s, s′; ε)

(O3.47)

Multiplying by Rn(X, s, s′) both sides and adding across states, we obtain

µ(X, s; ε) = β

[
∑

s′∈S
pi

ss′(vi(X′, s′; ε)R′n(1− ci))
1−γ

] 1−ψ−1
1−γ

. (O3.48)
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Evaluating the expression above at ε = 0, we obtain

µ∗(X, s) = βv∗(X, s)1−ψ−1

[
∑

s′∈S
p∗s′x

1−γ
s′

] 1−ψ−1
1−γ

. (O3.49)

Given µ∗(X, s), we obtain a system of equations for v̂i(X, s′):

v̂i(X, s)
v∗i (X, s)

− βE∗[x1−γ
s′ ]

1−ψ−1
1−γ ∑

s′∈S
ω∗s′

v̂i(X∗, s′)
v∗(X, s)

= βE∗[x1−γ
s′ ]

1−ψ−1
1−γ

[
∑

s′∈S

ω∗s′
1− γ

δi
ss′

p∗s′
− ∑

s′∈S
ω∗s′

Λ̂(X, s, s′)
Λ∗(X, s, s′)

]
(O3.50)

using the fact that Rp(s′)Λ∗(X, s, s′) =
x1−γ

s′

E∗[x1−γ

s′ ]
and the definition ω∗s ≡

p∗s x1−γ
s

E∗[x1−γ

s′ ]
.

We will solve first for the case X = X∗. We can write the system above in matrix form:


1− χvω∗1 −χvω∗2 . . . −χvω∗N
−χvω∗1 1− χvω∗2 . . . −χvω∗N

...
... . . .

...
−χvω∗1 −χvω∗2 . . . 1− χvω∗N




v̂i(X∗,1)
v∗(X,s)
v̂i(X∗,2)
v∗(X,s)

...
v̂i(X∗,N)
v∗(X,s)

 =


bv

i,1(X∗)
bv

i,2(X∗)
...

bv
i,N(X∗)

 , (O3.51)

where χv ≡ βE∗[x1−γ
s′ ]

1−ψ−1
1−γ and

bv
i,s(X∗) ≡ χv

[
∑

s′∈S

ω∗s′
1− γ

δi
ss′

p∗s′
− ∑

s′∈S
ω∗s′

Λ̂(X∗, s, s′)
Λ∗(X, s, s′)

]
. (O3.52)

Let ω∗ = [ω∗1 , ω∗2 , . . . , ω∗N] denote a row vector, v̂i(X) = [v̂i(X, 1), . . . , v̂i(X, N)]′ de-

note a column vector, bv
i (X) =

[
bv

i,1(X), . . . , bv
i,N(X)

]′
denote a column-vector, and 1N

denote a N-dimensional column vector filled with ones. We can then write the expres-
sion above as follows:

[I − χv1Nω∗]
v̂i(X∗)

v∗i
= bv

i (X∗). (O3.53)

The matrix on the left-hand side corresponds to the sum of an invertible matrix and
rank-one matrix. An application of the Sherman-Morrison formula gives the inverse of
this matrix, which gives the solution

v̂i(X∗) = v∗i (X, s)
[

I +
χv

1− χv
1Nω∗

]
bv

i (X∗) (O3.54)
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The net-worth multiplier at state (X, s) is then given by

v̂i(X∗, s)
v∗i (X, s)

= bv
i,s +

χv

1− χv
∑
s̃∈S

ω∗s̃ bv
i,s̃(X∗). (O3.55)

Using the expression for bv
i,s, we can write the expression above as follows

v̂i(X∗, s)
v∗i (X, s)

= χv ∑
s̃∈S

(
1s̃=s +

χv

1− χv
ω∗s̃

)[
∑

s′∈S

ω∗s′
1− γ

δi
s̃s′

p∗s′
− ∑

s′∈S
ω∗s′

Λ̂(X∗, s̃, s′)
Λ∗(X, s, s′)

]
. (O3.56)

Taking the average of the expression above using the weights ω∗s , we obtain

∑
s∈S

ω∗s
v̂i(X∗, s)
v∗i (X, s)

=
χv

1− χv
∑
s̃∈S

ω∗s̃

[
∑

s′∈S

ω∗s′
1− γ

δi
s̃s′

p∗s′
− ∑

s′∈S
ω∗s′

Λ̂(X∗, s̃, s′)
Λ∗(X, s, s′)

]
. (O3.57)

The net-worth multiplier at (X, s) is then given by

v̂i(X, s)
v∗i (X, s)

= χv

[
∑

s′∈S

ω∗s′
1− γ

δi
ss′

p∗s′
− ∑

s′∈S
ω∗s′

Λ̂(X, s, s′)
Λ∗(X, s, s′)

+ ∑
s′∈S

ω∗s′
v̂i(X∗, s′)
v∗(X, s)

]
(O3.58)

We can then write the expression above as follows:

v̂i(X, s)
v∗i (X, s)

= χv ∑
s′∈S

ω∗s′

[
1

1− γ

δi
ss′

p∗s′
− Λ̂(X, s, s′)

Λ∗(X, s, s′)

]
+ χvv, (O3.59)

where

v ≡ χv

1− χv
∑
s̃∈S

ω∗s̃ ∑
s′∈S

ω∗s′

[
1

1− γ

δi
s̃s′

p∗s′
− Λ̂(X∗, s̃, s′)

Λ∗(X∗, s̃, s′)

]
. (O3.60)

Step 2: consumption-wealth ratio. From the envelope condition, the consumption-
wealth ratio is given by

ci(X, s; ε) = (1− β)ψvi(X, s; ε)1−ψ. (O3.61)

The first-order correction for consumption is then given by

ĉ1(X, s) = (1− β)ψ(v∗i (X, s))1−ψ(1− ψ)
v̂i(X, s)
v∗i (X, s)

. (O3.62)
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Step 3: portfolio return. Using the expression for the Lagrange multiplier, we can write
the first-order condition for the portfolio return as follows

pi
ss′

p∗s′
vi(X′, s′)1−γRn(X, s, s′; ε)−γ = Λ(X, s, s′; ε) ∑

s′∈S
pi

ss′(vi(X′, s′; ε)Rn(X, s, s′; ε))1−γ

(O3.63)
Expanding the expression above in ε, we obtain

δi
ss′

p∗s′
+ (1− γ)

v̂i(X∗, s′)
v∗(X, s)

− γ
R̂n,i(X, s, s′)
R∗p(X, s, s′)

=
Λ̂(X, s, s′)
Λ∗(X, s, s′)

(O3.64)

+ ∑
s′∈S ′

p∗s′(v
∗(X, s)R∗p(s′))1−γ

∑s̃∈S p∗s̃ (v∗(X, s)R∗p(s̃))1−γ

[
δi

ss′

p∗s′
+ (1− γ)

(
v̂i(X∗, s′)
v∗(X, s)

+
R̂n,i(X, s, s′)
R∗p(X, s, s′)

)]
(O3.65)

Rearranging the expression above, we obtain

γ
R̂n,i(X, s, s′)
R∗p(X, s, s′)

+ (1− γ) ∑
s̃∈S ′

ω∗s̃
R̂n,i(X, s, s̃)
R∗p(X, s, s̃)

= bR
i (X, s, s′), (O3.66)

where

bR
i (X, s, s′) ≡

δi
ss′

p∗s′
+ (1− γ)

v̂i(X∗, s′)
v∗(X, s)

− ∑
s̃∈S

ω∗s̃

[
δi

ss̃
p∗s̃

+ (1− γ)
v̂i(X∗, s̃)
v∗(X, s)

]
− Λ̂1(X, s, s′)

Λ∗(X, s, s′)

(O3.67)

We can write the system above in matrix form:


γ + (1− γ)ω∗1 (1− γ)ω∗2 . . . (1− γ)ω∗N
(1− γ)ω∗1 γ + (1− γ)ω∗2 . . . (1− γ)ω∗N

...
... . . .

...
(1− γ)ω∗1 (1− γ)ω∗2 . . . γ + (1−ω)ω∗N





R̂n,i(X,s,1)
R∗p(X,s,1)
R̂n,i(X,s,2)
R∗p(X,s,2)

...
R̂n,i(X,s,N)
R∗p(X,s,N)

 =


bR

i (X, s, 1)
bR

i (X, s, 2)
...

bR
i (X, s, N)


(O3.68)

Denote the matrix above by A∗ and define the row vector ω∗ ≡
[ω∗(s1), ω∗(s2), . . . , ω∗(sN)] and the column-vector 1 with 1 in every entry. We can
then write A∗ as follows:

A∗ = γI + (1− γ)1ω∗. (O3.69)
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The inverse of A∗ is given by

(A∗)−1 =
1
γ

I − 1− γ

γ
1ω∗. (O3.70)

The portfolio return is then given by

R̂n,i(X, s, s′)
R∗p(X, s, s′)

=
1
γ

bR
i (X, s, s′) +

1− γ

γ ∑
s̃∈S

ω∗s̃
Λ̂1(X, s, s̃)
Λ∗(X, s, s̃)

. (O3.71)

We can write the expression above as follows:

R̂n,i(X, s, s′)
R∗p(X, s, s′)

=
1
γ ∑̃

s∈S
ω∗s̃

[(
δi

ss′

p∗s′
− δi

ss̃
p∗s̃

)
− Λ̂1(X, s, s′)

Λ∗(X, s, s′)

]
+

1− γ

γ ∑̃
s∈S

ω∗s̃

[(
v̂i(X∗, s′)
v∗(X, s)

− v̂i(X∗, s̃)
v∗(X, s)

)
+

Λ̂1(X, s, s̃)
Λ∗(X, s, s̃)

]
.

(O3.72)
Notice that we can write the term involving v̂i(X, s) as follows

v̂i(X∗, s′)
v∗(X∗, s′)

− ∑
s̃∈S

ω∗s̃
v̂i(X∗, s̃)
v∗(X∗, s̃)

= χv ∑
s̃∈S

ω∗s̃ ∑
s̃′∈S

ω∗s̃′

[
1

1− γ

(
δi

s′ s̃′

p∗s̃′
−

δi
s̃s̃′

p∗s̃′

)
−
(

Λ̂(X∗, s′, s̃′)
Λ∗(X∗, s′, s̃′)

− Λ̂(X∗, s̃, s̃′)
Λ∗(X∗, s̃, s̃′)

)]
(O3.73)

O3.5 Proof of Proposition O.5

Proof. From the expression for wages, we obtain:

w(E; ε) = ξ

(
α̂E
ξ̂

) ν
1+ν−α

= ξ̂

(
α̂E
ξ̂

) ν
1+ν

ε +O(ε2). (O3.74)

Hours are given by

h(E; ε) = exp
[

1
1 + ν− α

log
(

α̂E
ξ̂

)]
=

(
α̂E
ξ̂

) 1
1+ν

+

(
α̂E
ξ̂

) 1
1+ν log

(
α̂E
ξ̂

)
(1 + ν)2 α̂ε +O(ε2). (O3.75)

Profits are given by

π(X, s; ε) =

(
α̂

ξ̂

) α
1+ν−α [

xsE
α

1+ν−α − αE
1+ν

1+ν−α

]
= xs +

[
xs

log
(
α̂E/ξ̂

)
1 + ν

− E

]
α̂ε +O(ε2), (O3.76)

where we used the following Taylor expansion:

E
α

1+ν−α = 1 +
log E
1 + ν

α̂ε +O(ε2). (O3.77)
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O3.6 Proof of Proposition O.6

Proof. We derive next the expression for the price and return for the surplus claim and riskless

asset.

Step 1: price of surplus claim. The market clearing for consumption can be written as

P(X, s; ε)
I

∑
i=1

ηici(X, s; ε) =

(
α

ξ

) α
1+ν−α

[
xsE

α
1+ν−α − α

1 + ν
E

1+ν
1+ν−α

]
. (O3.78)

Expanding the expression above in ε, we obtain

P̂(X, s)
P∗(X, s)

+
I

∑
i=1

ηi
ĉi(X, s)
c∗(X, s)

=

[
log(α̂E/ξ̂)

1 + ν
− 1

1 + ν

E
xs

]
α̂. (O3.79)

Rearranging the expression above, and using the expression for ĉi(X, s), we obtain

P̂(X, s)
P∗(X, s)

=

[
log(α̂E/ξ̂)− E

xs

]
α̂

1 + ν
− (1− ψ)

I

∑
i=1

ηi
v̂i(X, s)
v∗(X, s)

. (O3.80)

Step 2: return on surplus claim. The return on the surplus claim is defined as follows

Rp(X, s, s′; ε) =
xsP(χ(X, s, s′; ε), s′; ε)

P(X, s; ε)−
(

xsh(E)α − ξ h(E;ε)1+ν

1+ν

) . (O3.81)

Expanding the expression above in ε, we obtain

R̂p(X, s, s′)
R∗p(X, s, s′)

=
P̂(X∗, s′)
P∗(X∗, s′)

−
[

P∗(X, s)
P∗(X, s)− xs

P̂(X, s)
P∗(X, s)

− 1
P∗(X, s)− xs

(
xs log

(
α̂

ξ̂
E
)
− E

)
α̂

1 + ν

]
.

(O3.82)

We can write the expression above as follows:

R̂p(X, s, s′)
R∗p(X, s, s′)

=
P̂(X∗, s′)
P∗(X∗, s′)

−
[
(β∗)−1 P̂(X, s)

P∗(X, s)
+ (1− (β∗)−1)

(
log
(

α̂

ξ̂
E
)
− E

xs

)
α̂

1 + ν

]
, (O3.83)

using the fact that P∗(X, s) = xs/(1− β∗).

Using the expression for the price of the surplus claim, we obtain

R̂p(X, s, s′)
R∗p(X, s, s′)

=

[
log(E∗/E)−

(
E∗

xs′
− E

xs

)]
α̂

1 + ν
− (1− ψ)

I

∑
i=1

ηi

[
v̂i(X∗, s′)
v∗(X∗, s′)

− 1
β∗

v̂i(X, s)
v∗(X, s)

]
,

(O3.84)

33



Step 3: interest rate. The interest rate is given by

Rb(X, s, s′; ε) =

[
∑

s′∈S
p∗s′Λ(X, s, s′; ε)

]−1

⇒ R̂b(X, s)
R∗b(X, s)

= − ∑
s′∈S

ps′x
−γ
s′

E∗[x−γ
s′ ]

Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O3.85)

Step 4: stock prices. Stock prices, normalized by current productivity, satisfy the functional

equation:

Q(X, s; ε) = ∑
s′∈S

p∗s′Λ(X, s, s′; ε)

[(
α̂

ξ̂

) α
1+ν−α (

xs′E′(X, s; ε)
α

1+ν−α − αE′(X, s; ε)
1+ν

1+ν−α

)
+ xs′Q(χ(X, s, s′; ε), s′; ε)

]
(O3.86)

For ε = 0, we obtain

Q∗(X, s) = ∑
s′∈S

p∗s′Λ
∗(X, s, s′)xs′

[
1 + Q∗(X∗, s′)

]
. (O3.87)

We can write the expression above as follows:

Q∗(X, s) = β∗ ∑
s′∈S

p∗s′x
1−γ
s′

E∗[x1−γ
s′ ]

[
1 + Q∗(X∗, s′)

]
⇒ Q∗(X, s) =

β∗

1− β∗
. (O3.88)

Expanding the expression for Q(X, s), we obtain

Q̂(X, s)
Q∗(X, s)

= ∑
s′∈S

ω∗s′

 Λ̂(X, s, s′)
Λ∗(X, s, s′)

+ (1− β∗)

 log
(

α̂E∗
ξ̂

)
1 + ν

− E∗

xs′

 α̂ + β∗
Q̂(X∗, s′)
Q(X∗, s)

 . (O3.89)

Evaluating the expression above at X = X∗, we obtain

[I − β∗1Nω∗] Q̂(X∗) = bQ(X∗), (O3.90)

where Q̂(X) ≡ [Q̂(X, 1), . . . , Q̂(X, N)]′, bQ(X) ≡
[
bQ(X, 1), . . . , bQ(X, N)

]′, and bQ(X, s) ≡

Q∗(X, s)∑s′∈S ω∗s′

[
Λ̂(X,s,s′)
Λ∗(X,s,s′) + (1− β∗)

(
log
(

α̂E∗
ξ̂

)
1+ν − E∗

xs′

)
α̂

]
.

Solving the system above, we obtain

Q̂(X∗) =
[

I +
β∗

1− β∗
1Nω∗

]
bQ(X∗). (O3.91)

We can then write Q̂(X, s) as follows:

Q̂(X, s)
Q∗(X, s)

= ∑
s′∈S

ω∗s′

[
Λ̂(X, s, s′)
Λ∗(X, s, s′)

+ β∗
Λ̂(X∗, s, s′)
Λ∗(X∗, s, s′)

+
(β∗)2

1− β∗ ∑
s̃∈S

ω∗s̃
Λ̂(X∗, s̃, s′)
Λ∗(X∗, s, s′)

]
+

 log
(

α̂E∗
ξ̂

)
1 + ν

− ∑
s′∈S

ω∗s′
E∗

xs′

 α̂.

(O3.92)
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Step 5: equity returns. Equity returns are given by

RE(X, s, s′; ε) =
xs′Q(χ(X, s, s′; ε), s′) + π(E′(X, s; ε; ε), s′)

Q(X, s; ε)
. (O3.93)

Evaluating the expression above at ε = 0, we obtain

R∗E(X, s, s′) =
xs′Q∗(X∗, s′) + π∗(E∗, s′)

Q∗(X, s; ε)
=

xs′

β∗
. (O3.94)

The first-order correction is given by

R̂E(X, s, s′)
R∗E(X, s, s′)

= β∗
Q̂(X∗, s′)
Q∗(X, s)

+ (1− β∗)
π̂(E∗, s′)

xs′
− Q̂(X, s)

Q∗(X, s)
. (O3.95)

Step 6: conditional risk premium. The conditional risk premium is defined as follows:

RE(X, s; ε) = ∑
s′∈S

p∗s′
[

RE(X, s, s′; ε)

Rb(X, s; ε)

]
. (O3.96)

The first-order correction is given by

R̂E(X, s)
R∗(X, s)

= ∑
s′∈S

p∗s′xs′

E∗[xs′ ]

R̂E(X, s, s′)
R∗E(X, s, s′)

− R̂b(X, s)
R∗b(X, s)

. (O3.97)

O3.7 Proof of Proposition O.7

Proof. We consider next the law of motion of ηi and L.

Step 1: wealth distribution. The law of motion of ηi can be written as

η′i(X, s, s′; ε)
I

∑
j=1

ηjRj,n(X, s, s′; ε)(1− cj(X, s; ε)) = ηiRi,n(X, s, s′; ε)(1− ci(X, s; ε)). (O3.98)

Expanding the expression above in ε, we obtain

η̂′i(X, s, s′) = ηi

[
R̂i,n(X, s, s′)
R∗i,n(X, s, s′)

−
I

∑
j=1

ηi
R̂j,n(X, s, s′)
R∗j,n(X, s, s′)

−
c∗i (X, s)

1− c∗i (X, s)

(
ĉi(X, s)
c∗i (X, s)

−
I

∑
j=1

ηj
ĉj(X, s)
c∗j (X, s)

)]
.

(O3.99)

Using c∗i (X, s) = 1− β∗ gives the expression in the proposition.
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Step 2: risk-neutral probability of productivity growth. The law of motion of L can be

written as

E′(X, s; ε) = Rb(X, s; ε) ∑
s′∈S

p∗s′Λ(X, s, s′; ε)xs′ . (O3.100)

Expanding the expression above in ε, we obtain

Ê′(X, s)
E∗(X, s)

=
R̂b(X, s)
R∗b(X, s)

+ ∑
s′∈S

p∗s′Λ
∗(X, s, s′)xs′

E∗[Λ∗(X, s, s′)xs′ ]

Λ̂(X, s, s′)
Λ∗(X, s, s′)

(O3.101)

We can write the expression above as follows:

Ê′(X, s)
E∗

=
R̂b(X, s)
R∗b(X, s)

+ ∑
s′∈S

p∗s′x
1−γ
s′

E∗[x1−γ
s′ ]

Λ̂(X, s, s′)
Λ∗(X, s, s′)

. (O3.102)

Using the definition of E∗ and ω∗s , we obtain the expression given in the proposition.

O3.8 Proof of Proposition O.8

Proof. We consider the derivation of the economy’s SDF Λ̂(X, s, s′).

Step 1: the system of equations. The market clearing for the Arrow security paying off in

state s′ is given by

I

∑
i=1

ηi(1− ci(X, s; ε))Rn,i(X, s, s′) = Rp(X, s, s′)
I

∑
i=1

ηi(1− ci(X, s; ε)). (O3.103)

Expanding the expression above, we obtain

I

∑
i=1

ηiR̂n,i(X, s, s′) = R̂p(X, s, s′). (O3.104)

Using the expression for R̂n,i(X, s, s′) and R̂p(X, s, s′), we obtain

1
γ

[
δss′(X)

p∗s′
− ∑

s̃′∈S
ω∗s̃′

δss̃′(X)

p∗s̃′
− Λ̂(X, s, s′)

Λ∗(X, s, s′)

]
+

1− γ

γ

[
I

∑
i=1

ηi

[
v̂i(X∗, s′)
v∗(X, s)

− ∑
s̃∈S

ω∗s̃
v̂i(X∗, s̃)
v∗(X, s)

]
+ ∑

s̃∈S
ω∗s̃

Λ̂(X, s, s̃)
Λ∗(X, s, s̃)

]
=

[
log

E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
+ (ψ− 1)

I

∑
i=1

ηi

[
v̂i(X∗, s′)
v∗(X∗, s′)

− 1
β∗

v̂i(X, s)
v∗(X, s)

]
. (O3.105)
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Using the expression for v̂i(X, s), we obtain

1
γ

Λ̂(X, s, s′)
Λ∗(X, s, s′)

+
1− γ

γ

[
β∗ ∑

s̃∈S
ω∗s̃ ∑

s̃′∈S
ω∗s̃′

(
Λ̂(X∗, s′, s̃′)
Λ∗(X∗, s′, s̃′)

− Λ̂(X∗, s̃, s̃′)
Λ∗(X∗, s̃, s̃′)

)
− ∑

s̃′∈S
ω∗s̃′

Λ̂(X, s, s̃′)
Λ∗(X, s, s̃′)

]
(O3.106)

(ψ− 1)β∗
[
− ∑

s̃′∈S
ω∗s̃′

(
Λ̂(X∗, s′, s̃′)
Λ∗(X∗, s′, s̃′)

− 1
β∗

Λ̂(X, s, s̃′)
Λ∗(X, s, s̃′)

)
+ ∑

s̃∈S
ω∗s̃ ∑

s̃′∈S
ω∗s̃′

Λ̂(X∗, s̃, s̃′)
Λ∗(X∗, s̃, s̃′)

]
= bΛ(X, s, s′),

(O3.107)

where

bΛ(X, s, s′) ≡ 1
γ

[
δss′(X)

p∗s′
− ∑

s̃′∈S
ω∗s̃′

δss̃′(X)

p∗s̃′

]
+

β∗

γ

[
∑
s̃∈S

ω∗s̃ ∑
s̃′∈S

ω∗s̃′

[
δs′ s̃′(X)

p∗s̃′
− δs̃s̃′(X)

p∗s̃′

]]
+

− ψ− 1
1− γ ∑

s̃∈S
ω∗s̃ ∑

s̃′∈S
ω∗s̃′

[
δss̃′(X)

p∗s̃′
− β∗

δs′ s̃′(X∗)
p∗s̃′

+ β∗
δs̃s̃′(X)

p∗s̃′

]
−
[

log
E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
.

(O3.108)

We can simplify the expression above as follows:

1
γ

Λ̂(X, s, s′)
Λ∗(X, s, s′)

+ (ψ− γ−1)

[
ω∗ · Λ̂(X, s)− β∗ω∗ · Λ̂(X∗, s′) + β∗ ∑

s̃∈S
ωs̃(ω

∗ · Λ̂(X∗, s̃))

]
= bΛ(X, s, s′),

(O3.109)

where Λ̂(X, s) =
[

Λ̂(X∗,s,1)
Λ∗(X∗,s,1) , Λ̂(X∗,s,2)

Λ∗(X∗,s,2) , . . . , Λ̂(X∗,s,N)
Λ∗(X∗,s,N)

]′
and ω∗ · Λ̂(X, s) = ∑s̃′ ω

∗
s̃′

Λ̂(X,s,s̃′)
Λ∗(X,s,s̃′) .

Step 2: solving the system. We can write the system above in matrix form as follows:[
γ−1 I + (ψ− γ−1)1Nω∗

]
Λ̂(X, s) = b̃Λ(X, s), (O3.110)

where b̃Λ(X, s) = [b̃Λ(X, s, 1), b̃Λ(X, s, 2), . . . , b̃Λ(X, s, N)]′ and

b̃Λ(X, s, s′) = bΛ(X, s, s′) + (ψ− γ−1)β∗
[

ω∗ · Λ̂(X∗, s′)− ∑
s̃∈S

ωs̃(ω
∗ · Λ̂(X∗, s̃))

]
(O3.111)

Applying the Sherman-Morrison formula, we can invert the system above

Λ̂(X, s) =
[
γI − (γ− ψ−1)1Nω∗

]
b̃Λ(X, s). (O3.112)
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We can then write the expression above as follows:

Λ̂(X, s, s′)
Λ∗(X, s, s′)

= γbΛ(X, s, s′)+ (γψ− 1)β∗
[

ω∗ · Λ̂(X∗, s′)− ∑̃
s∈S

ωs̃(ω
∗ · Λ̂(X∗, s̃))

]
− (γ−ψ−1)ω∗bΛ(X, s).

(O3.113)

Step 3: solving for the average Λ̂(X, s, s′). Assuming X = X∗, multiplying by ω∗s′ , and
adding across states, we obtain

ω∗Λ̂(X∗, s) = ψ−1ω∗bΛ(X∗, s). (O3.114)

Averaging across s, we obtain

∑
s̃∈S

ω∗s̃ [ω
∗Λ̂(X∗, s̃)] = ψ−1 ∑

s̃∈S
ω∗s̃ [ω

∗bΛ(X∗, s̃)]. (O3.115)

We can then write Λ̂(X, s, s′) as follows

Λ̂(X, s, s′)
Λ∗(X, s, s′)

= γbΛ(X, s, s′)− (γ−ψ−1)ω∗bΛ(X, s)+ (γ−ψ−1)β∗
[

ω∗ · bΛ(X∗, s′)− ∑̃
s∈S

ωs̃(ω
∗ · bΛ(X∗, s̃))

]
.

(O3.116)

Step 4: simplifying the expression for bΛ(X, s, s′). We can write bΛ(X, s, s′) as follows:

bΛ(X, s, s′) =
1
γ

[
δss′(X)

p∗s′
−ω∗ · δs(X)

]
+

β∗

γ

[
ω∗δs′(X)− ∑̃

s
ω∗s̃ ω∗ · δs̃(X)

]

+
ψ− 1
1− γ

[
ω∗ · δs(X)− β∗ω∗ · δs′(X) + β∗ ∑̃

s
ω∗s̃ (ω

∗ · δs̃(X))

]
−
[

log
E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
.

(O3.117)

Combining terms, we obtain

bΛ(X, s, s′) =
1
γ

δss′(X)

p∗s′
− ψ− γ−1

γ− 1

[
ω∗ · δs(X)− β∗ω∗ · δs′(X) + β∗ ∑̃

s
ω∗s̃ (ω

∗ · δs̃(X))

]
−
[

log
E∗

E
−
(

E∗

xs′
− E

xs

)]
α̂

1 + ν
.

(O3.118)

Notice that we can Λ̂(X, s, s′) as follows:

Λ̂(X, s, s′)
Λ∗(X, s, s′)

=
Λ̂(X∗, s, s′)
Λ∗(X, s, s′)

+ ψ−1
[

log
E
E∗
− E− E∗

xs

]
α̂

1 + ν
. (O3.119)
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O3.9 The economy with no labor frictions and iid returns

Suppose that labor can be chosen conditional on the current productivity level. In this case, the

problem of the firm can be written as

max
ht

xthα
t − wtht, (O3.120)

where wt ≡ Wt
At−1

. Labor demand takes the familiar form:

αxthα−1
t = wt ⇒ ht =

(
αxt

wt

) 1
1−α

. (O3.121)

The labor supply from households is given by

ht =

(
wt

ξ

) 1
ν

. (O3.122)

Combining labor supply and labor demand, we obtain the equilibrium hours and wages:

ht =

(
αxt

ξ

) 1
1+ν−α

, wt = ξ
1−α

1+ν−α (αxt)
ν

1+ν−α . (O3.123)

Firm’s profits are given by

πt = At−1(1− α)

(
α

ξ

) α
1+ν−α

x
1+ν

1+ν−α
t . (O3.124)

Total surplus is given by

C̃t = At−1

[
xthα

t − ξ
h1+ν

t
1 + ν

]
= At−1

(
1− α

1 + ν

)(
α

ξ

) α
1+ν−α

x
1+ν

1+ν−α
t . (O3.125)

Let P(X, s) denote the price of the surplus claim normalized by lagged productivity. Market

clearing condition implies that

1− β∗ =

(
1− α

1 + ν

)(
α

ξ

) α
1+ν−α x

1+ν
1+ν−α
s

P(X, s)
, (O3.126)

where 1− β∗ is the consumption-wealth ratio, which we assume to be constant.
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The return on the surplus claim is given by

Rp(X, s, s′) =
xs

β∗
x

1+ν
1+ν−α

s′

x
1+ν

1+ν−α
s

=
xs′

β∗

(
xs′

xs

) α
1+ν−α

. (O3.127)
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